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ABSTRACT 

To ensure asymptomatic stability and improve vehicle ride comfort, this paper develops a fuzzy neural network 

(FNN) based on the evolved bat algorithm (EBA) to design adaptive backstepping controllers with gray signal 

predicators. A recoil method is used to evaluate the nonlinearity of the controlled systems and to derive the control law 

which is evolved for the tracking of the signals. A group of grey differential equations are applied for the grey model 

(GM) (n, h), which is an active model where h is the number of considered variables and n is the order of the grey 

differential equations. In the article, the Discrete GM (2.1) is used to obtain the advanced motion of the nonlinear 

system, so that the command controller can prove the Lyapunov stability and feasibility of the entire scheme through the 

Lyapunov-like lemma. The controller design criteria are demonstrated for mechanical elastic wheels (MEW) to 

establish a viable mathematical framework for the new wheels. 

Keywords: evolved control, Lyapunov energy function, DGM (2.1), adaptive backstepping, neural network. 

INTRODUCTION 

With the rapid growth of the automobile industry, automobile safety has also been significantly improved 

(Singh et al., 2019; Cisija-Kobilica et al., 2019). More and more automobile manufacturers car company that makes 

automobile are beginning to pay attention to removing noise, vibration and drive irregularities (Cho et al,2017; Andert 

et al,2017; Charfeddine and Jerbi, 2021). So far, people have made great efforts have been made to improve driving 

stillness, including the development of active steering, better steerable steering systems and steering motors (Xiangyang 

et al,2017;Zhang and Wang et al,2017). As one of the most important components of the vehicle, the chassis plays an 

important role in ameliorating driving vibration stillness and improving performance (Moreno Ramírez et al, 2018; 

Zhang et al,2018; Kilicaslan,2018; Kawamoto et al,2018). Many researchers began to consider artificial intelligence 

control methodology for the systems.   

Takagi and Sugeno proposed a new fuzzy model, Takagi-Sugeno fuzzy model in 1985. Also, grey system 

theory is a good choice for a control system. The grey model, denoted by GM (n,h) in grey system theory, is a dynamic 

model which consists of a group of grey differential equations, where n is the order of the grey  differential equations 

and h  is the number of considered variables. The grey models play an important role in sequence (series) forecasting 

problems in grey system theory. Among all the GM (n,h) models, the most commonly utilized is GM (1,1) model 

because of the simplicity of the modeling process and, especially, the forecasting accuracy. In practical nonlinear 

application, however, it is not easy to know the precise data for the system input and output due to the complexity of the 

control law or the time delay caused by the signal transmission of the system, causing the control quantity calculated by 

the control law to fail to respond to the control system. 
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The requirements of the current state of the system cannot achieve good control. For this type of situation, gray 

predictive control can be used to find the changing law of system behavior development, and to predict the state of the 

system. This is the so-called advanced control to compensate for the time delay of the controlled systems. Because of 

the strong merits of the T-S fuzzy model, the nonstationary control for T–S fuzzy Markovian switching systems is 

presented for practical application. The finite-time stabilization of the T–S fuzzy semi-Markov switching systems has 

also been proven robust for a sampled-data control approach (for more details, please see (Chen et al,2021; Chen et 

al,2021)).  

In the above control theories, a back-propagation neural network method is believed suitable to generate the 

proper drive signal after learning the dynamics of the whole system. This method can be described as follows. First, we 

use the neural network to learn the dynamic modeling of the unknown nonlinear system. The neural network can be 

interpreted based on the relationship between the input and output of the whole system. Then, the neural network 

generates the appropriate drive signal to achieve the desired performance. This method is called inverse modeling. It is 

not necessary to analyze the mathematical model of the system. Through many iterations we can obtain good 

performance in spite of the higher order and nonlinear system. 

The nonlinear structure of the network is as close as possible to that of the neural network. In order to simplify 

the control problem, the LDI (Linear Differential Inclusion) notation is used to study the stability of large-scale 

nonlinear proportional systems. As we know, the evolutionary bat algorithm (EBA) can be used to solve the numerical 

optimization problem of swarm intelligence, improving the accuracy to find the best short-range solution, and shorten 

the calculation process. 

Generally, the work of control strategies to improve vehicle riding comfort (especially active suspension) for 

such wheels is rarely concentrated on the control strategy. It is necessary to consider nonlinear systems and perform 

some operations in this area with certainty. The gray DGM model (2.1) is particularly appropriate for be writing no 

monotonic vibration sequences and it was widely applied in signal analyses (Shao and Su,2012; Huang et 

al,2016;Deshpande et al,2014;Tsai et al,2011;Chen,2014a;Chen 2014b;Chen et al,2020c;Chen et al,2020a; Chen and 

Chen 2020b; Chen et al, 2019). Therefore, in this study, the gray DGM model (2.1) is used to provide predictive 

information and increase the power of the system controller can make powerful to make the best for suspension control 

system. 

In short, the focus of this article is to announce the new features of elastic mechanics to avoid wheel failure, 

and to design a more efficient steering wheel to match the new wheels with suspension. In order to reflect the real 

situation, we consider the speed and uncertainty of the wheel and the suspension. To identify the continuity of 

best-in-class removal methods, gray signals are used to obtain future outputs. Finally, the statistical analysis evaluated 

the effectiveness and reliability of the proposed control model. 

The rest of this paper is organized as follows. The Section I describes the description of the system. In case of 

model errors, section I provides sufficient conditions for asymptomatic stability of nonlinear system. A numerical 

example with simulation is given to show the feasibility of our method in Chapter IV, and some of the concluding 

remarks are given to conclude the paper. 

SYSTEM DESCRIPTION  

Let 
(0)x  be a non-negative original data sequence, 

(0) (0) (0) (0)( (1), (2), , ( )),x x x x n   

and suppose that 
(1)x  is the first-order AGO sequence, 

(1) (1) (1) (1)( (1), (2), , ( )).x x x x n   
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Then, by taking AGO on 
(0) (1),x x can be obtained by 

(1) (0) (0)

1

( ) ( ),
k

m

x k AGO x x m


     1,2, , .k n   

( ) ( 1)

1

( ) ( ),
k

j j

m

x k x m



       1,2, , .k n   

  Contrarily，
(0)x can be obtained by taking IAGO on 

(1)x  as 

(1) (1)

(0) (1)

(1)

( ) ( 1), 2,

(1), 1.

x k x k for k
x LAGO x

x for k

   
  



 

Let 
(1)z be the sequence obtained by applying MEAN generating  

operation, for simplify denoted by MEAN, to 
(1)x as 

(1) (1) (1) (1)( (2), (3), , ( ))z z z z n   

Then, 

(1)z MEAN  
(1) (1){ ( ), ( 1)}x k x k  .  

The data generating operations are viewed as the first step in building a grey model (GM).  Especially, AGO operation 

can be transformed the disorderly row data to the regular sequence, and find out the interval or hidden regular property 

of the original sequence, and then it also can weaken the randomness of the irregular sequence. 

The Grey Difference Equation of GM(1,1)  

x
(0) 

(k)  az 
(1) 

(k )  u, 

is called a grey difference equation of GM(1,1),  where  a  and  u  are called the development coefficient and the 

grey input, respectively.  And the corresponding whitening equation is represented as follows 

  

(1)
(1)( )

( )
dy t

ay t u
dt

   

(1)
(0) (1) (1) ( )

( ) ( ) ( 1)
dy t

y k y k y k
dt
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(1) (1)( ) ( )z k y t  

Proof. Assume 

(0) (1)( ) ( )x k az k kb    

For Y Ba , which gives the error sequence Y Ba   .Let 

(0) (1) 2

2

( ) ( ) ( ( ) ( ) ) .
n

T T

k

S Y Ba Y Ba x k az k bk 


        

(0) (1) (1)

2

(0) (1)

2

2 ( ( ) az ( ) ) ( ) 0

2 ( ( ) ( ) ) 0.

n

k

n

k

s
x k k bk z k

a

s
k x k az k bk

b






   


     







 

Table 1. Nomenclature. 

 

The original state, as shown in Table 1, is described as the position without forces on the suspension and 

wheels. The direction and dynamics of the axis can describe the following (Chen,2021f; Chen et al,2021b;Chen et 

al,2021c; Chen,2021a; Chen et al,2021e; Chen et al,2021d): 
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1 2

2 1 1 1 2 2 2

3 4

4 1 1 1 2 2 2

5 6

6 1 1 1 1 1

1

7 8

8 2 2 2 2 2

2

1
[ ]

1
[ ]

1
[ ]

1
[ ]

k c k c

k c k c

k c t

k c t

x x

x F F u F F u Mg
M

x x

x F a F a u a F b F b u b
ly

x x

x F F u F m g
m

x x

x F F u F m g
m





       








     


 

     


 



    


.                      (1) 

So far, we consider the nonlinear distance between suspension and water wave, and the active suspension 

system with water wave is modeled. In the next part, we consider the suspension controller consists of an adaptive 

backstep control law, an ideal suspension motion generator and a gray signal predictor, which controls the suspension 

motion to check the ideal state, and the signal predictor is adjusted again as expected. state projected by control law. 

The control structure is shown in Figure 1. For stable body, let us assume that there is ideal suspension movement. If the 

true vertical and pitching motion of the vehicle can track the required movement, the comfort of movement can be 

guaranteed. First , we describe the monitoring error. Lyapunov's error form can describe the following. 

1 3 2 41 3 2 4 1 3 2 4( , , , )V e e e e e e         2 41 1 2 3 3 4 2 4( ) ( )d de x x e x x           

2 41 1 1 1 1 2 3 3 3 3 3 4 2 4[ ( )] [ ( )]d d d de x x k e e x x k e                

2 2
2 41 1 3 3 2 1 4 3( ) ( )k e k e e e                                     .  (2) 

where e1, e3 denote the actual vertical motion compared with ideal suspension motion, and pitch motion of vehicle 

compared to the ideal suspension motion. δ is the differential form of e. 

Consider an NN model, S layers with 
qR (q=1,2,…,S) neurons for each layer, in which  

( ) ~ ( 1)x k x k m   are the state variables and ( ) ~ ( 1)u k u k n   are the input variables. 

The number of the layer is appended as a superscript to the names of the variables. Thus, the weight matrix of the qth  

layer is written as 
qW . Then the final output of the NN model can be inferred as follows: 

1 1 2 2 2 1 1( 1) ( ( ( ( ( ( ))) )))S S S S Sx k W W W W Z k         …… ……      (3) 
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Furthermore, based on the interpolation method and equation, we can obtain 

2 2
1 1 2

s 2 2
1 1 2

2 2 2 2
2 2

1 1 1 1

( 1) { ( ) ( ) ( , )( [ [ ( ) ( )s s
sR Rs

sR R

S S S S S

j j j j
j j j j

x k h k k G v W h k h k
   

     …h  

 

1 1
1 1

1 1
1 1 1

2 2
2 2 2 1 1 1 1 1

1

( , )( [ ( ) ( ) ( , )( ( ))])] ])}
R

R

j j
j j

G v W h k h k G v W Z k




       

( ) ( , ) ( )v v

v

h k J W Z k ,                                  

 

            (4) 

The dynamics of the NN model can be rewritten as the following LDI representation: 

1 1

( 1) ( ) ( ) ( ){ ( ) ( )}i i i i i

i i

x k h k J Z k h k A x k Bu k
 

 

     ,    (5) 

and iJ  is a constant matrix with the appropriate dimension associated with ( , )vJ W  .  

The final output of this fuzzy controller is inferred as follows: 

 
1

1

1

( ) ( )

( ) ( ) ( ),

( )

l

l

J

j j J
j

j jJ
j

j

j

w k K x k

u k h k K x k

w k







   





      

with 
1

( ) ( ( )),
p

j jw k M x k 


   

1

( )
( )

( )
l

j
j J

j

j

w k
h k

w k





              (6) 

in which ))(( kxM j   is the grade of membership of )(kx  in jM . In this study, it is also assumed that 

,0)( kw j  and  0)(
1




lJ

j
jl kw for all k. Therefore, 0)( kh j  and  1)(

1




lJ

j

j kh for all k. 
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Fig 1. LDI based grey prediction control model 

EVOLVED NN MODELING STABILITY OF FREY SIGNAL PREDICTOR 

The desired ideal motion is obtained by good hybrid damping control. The virtual damping coefficient is given as the 

control signal. 

Watch the law of control, which includes monitoring errors and rate. If B=[p,ql,greyDGM(21) model can describe the 

following. 

(1) (0) (0) ( ) ,x px k q     Bh Y  

(0) (1) (0) (0) (0)

(0) (1) (0) (0) (0)

(0) (1) (0) (0) (0)

(2) 1 (2) (2) (1)

(3) 1 (3) (3) (2)
,

( ) 1 ( ) ( ) ( 1)

x x x x

x x x x
B Y

x n x n x n x n







      
     
        
     
     
       

         (7)  

Furthermore, the least square method is used to obtain  

1( )T T
a

B B B Y
u

  
  
 

 

where 

1 2 3

2

4 1

( 1)

( 1)

A A n A
a

n A A

 


 
, 2 4 1 3

2

4 1( 1)

A A A A
u

n A A




 
 

After assumption, the true value of the signal is measured in time. Due to the effect of random excitation on the 

levitation motion, we consider equation (8). 
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(0) (0)
(0) (0) (0)

(0)

(0) (0)
(0) (0) (0)

( 1) ( 1) ( ) 5 ( ) ( 1)

( 1)

( ) ( 1) ( ) 5 ( ) ( 1)

x n x n x n x n x n

x n

x n x n x n x n x n

      


  
     


 (8) 

If the matrix P and the constant k  exist in inequalities: 

0 PPHH ij
T
ij ,   0)()1()1( max

1  
q

T
qij

T
ij HHPPPHH                (9) 

are satisfied for  , ,2 ,1 i ; lj  , ,2 ,1  ., then the system is asymptotically stable.  

Proof:  

Let the Lyapunov function for the nonlinear system be defined as  

( ) ( ) ( )TV k x k Px k                                     (A.1) 

Where P  is a positive definite matrix. We then evaluate the backward difference of ( )V k on the trajectories to get 

( ) ( 1) ( ) ( 1) ( 1) ( ) ( )T TV k V k V k x k Px k x k Px k                           

1 1 1 1

{ ( ) ( ) ( ) ( )} { ( ) ( ) ( e( )} ( ) ( )
l l

T T
j ji ij i ij

i j i j

h k h k H x k e k P h k h k H x k x x k Px k
 

   

     ）          (A.2) 

Let 

1 2 3 4

1 1 1 1

( ) ( ) ( ) ( ) ( ) { } ( )
l l

T T
ji ij

i j

h k h k h k h k x k H PH P x k m m m m
 

 
    

              (A.3) 

Where 

2
2

1 ( ) ( ) ( ) ( ) ( ),
l

T T
ji ij ij

i j

m h k h k x k H PH P x k


  

   


 




 


i

l

j

α j
T
ij

T
ji kkkhkhkhm )()()()()()( 2

2 xPPHHx  
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i

l

j

ij
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ij
T

ji kkkhkhkhkh )(}2{)()()()()( xPPHHPHHx . 

Therefore, we have 


 




 


i

l

j

ij
T
ijα jij

T
α jij

T
ji kkhkhkhm PPHHHHPHHx ][][{)()()()( 2

2  

)(} kα j
T
α j xPPHH  0       for  i ; lj  , ,1   .         (A.4) 

In similar fashion 

03 m  and 04 m .                           (A.5) 

Substituting (A.4) and (A.5) into (A.3) yields 


   


 

 


1 1 1 1

)(}{)()()()()(
i

l

j

l
T
ij

T
ji kkkhkhkhkh xPPHHx  


 




1 1

)()()()()(
i

l

j

ij
T
ij

T
ji kkkhkh xPPHHx .                          (A.6) 

From (A.6) and (A.2), we have 


 




1 1

)()()()()()(
i

l

j

ij

T

ij

T

ji kkkhkhkV xPPHHx  


 




1 1

)}()()()(){()(
i

l

j

ij
TT

ij
T

ji kkkkkhkh xPHePeHx )()( kk T Pee .     (A.7) 
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Since P is a positive definite matrix, it follows that 
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Therefore, we obtain 


 




1 1

)(}{)()()()(
i

l

j

ij

T

ij

T

ji kkkhkhkV xPPHHx  


 





1 1

)(})1{()()()(
i

l

j

ij
T
ij

T
ji kkkhkh xPPHHx )()()()1( max

1 kk T
eeP  .(A.8) 

From (A.8) we can get 


 





1 1

)1{()()()()(
i

l

j

ij

T

ij

T

ji kkhkhkV PPHHx )(})()1( max
1 kq

T
q xHHP  . (A.9) 

The closed-loop nonlinear system is asymptotically stable. 

Based on Eqs. (5-6), we have 

1 1

( 1) ( ) ( )( ) ( )
l

ji i i j

i j

x k h k h k A B K x k


 

  
1 1

{ ( ( )) ( ) ( )( ) ( )}
l

ji i i j

i j

F x k h k h k A B K x k


 

    

1 1

( ) ( ) ( ) ( )
l

ji ij

i j

h k h k H x k e k


 

                    

where 

ij i i jH A B K  , i

1 1

( ) { ( ( )) ( ) ( ) ) ( )}
l

ji i j

i j

e k F x k h k h k A B K x k


 

   （  

which denotes the modeling error between the closed-loop nonlinear system and the closed-loop NN system. 

Suppose that there exits a bounding matrix
ijH   such that 
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( ) ( ) ( ) ( )
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ji ij

i j

e k h k h k H x k


 

   

for all trajectories ( )x k  and the bounding matrix ijH  can be described by ij ij qH H                               

where 1 ij , for 1, 2,i  …,  and 1,2,j  …, l , and the modeling error is bounded by the specified 

structured bounding matrix qH . 

Therefore, we can obtain 

)()( kkT ee })()()({})()()({
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)}({)}({ kk q
T

q xHxH .                                          

The procedures for determining ij  and qH  are described by the following simple example. Assuming that the 
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ijH  is 

qijij
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ij HH 


























2221

1211

22

11

0

0
 

where 11  ij

rr  for 2 ,1r . It is noticed that ij  can be chosen by other forms as long as 1 ij . 

The EBA is hereby proposed with the bat echolocation complex fuzzy system which appears in the practical world. 

Unlike other intelligence swarm algorithms, the advantage of EBA is good to solve the practical problem. The choice of 

different media determines search step. In the present study, that exists in the practical environment. EBA's function is 

summarized by some steps:  

a. Initialization: distribute artificial reagents by random assignment in the solution chamber. 

b. Movement: The artificial sample is moved. Generate a random number and check if it is greater than the fixed 

heart rate. If the result is positive, you can move the artificial remedy on a random walk 

1t t

i i
x x D 

,  

where 
1t

i
x 

 the coordinate of the i-th artificial agent at the last iteration; 
t

i
x

 the coordinate of the i-th artificial agent at 

the t-th iteration; and D the distance that the artificial agent moves in this iteration. 

Thus,
ΔD T 

,  

where 
Δ [ 1, 1]T  

 a random number. 


 a constant corresponding to the medium chosen in the experiment; and 

0.17 
 in our experiment because the chosen medium is air. 

 best

Rt t

i i
x x x 

, 
 0,  1 

,  

where best
x

 indicates the coordinate of the near best solution found so far throughout all artificial agents; 


 is a 

random number; and 
Rt

i
x

 represents the new coordinates of the artificial agent after the operation of the random walk 

process. 

c. Evaluation: calculate the suitability of the artificial remedy using a custom suitability function, and update it to 

119



ZY Chen, Yahui Meng, Ruei-yuan Wang and Timothy Chen 

 

the best stored solution. 

d. Termination: The termination status is checked to determine if you want to return to STEP 2 or end the 

program shortly and generate the best solution. 

The evaluation criteria for determining the condition of the club are based on a user-defined training function. In this 

article, the training function is used to get the usual symmetrical positive final matrix and control power to the control. 

In general, intelligence swarm algorithms have multiple iterations to find an almost optimal solution. Therefore, 

the same experiment is chosen to airy in which bats live. The total size indicates solution area for each iteration. We 

determine the total number and size of possible solutions that are considered sufficient to determine the parameters of 

the complex cloudy system in the application. 

EXAMPLE 

The fact is that all states in continuous functions of time. When the step is small enough, then we could also 

conclude that the state is practically unchanged. The Tstep time in DGM (2.1) must make control stable and limited. 

The previously designed controller receives the status of the gray signal predictor to stabilize the motion of the 

MEW-equipped active suspension. To further test the effectiveness of the controller, a set of movement data is used to 

test the accuracy of the DGM (2, 1) model with a number of signal sequences set to 6 and the step time to 0.001s. The 

practical results are listed in Figure 2, where the difference between the exact data and the forecast from the DGM (2, 1) 

is very small. If the data changes drastically, the surface model's tracking error (2.1) increases, but may meet the 

technical requirements. Therefore, the reliability of DGM (2.1) is guaranteed. 

The weight matrices are meant by 
1

W  and 
2

W . The weights could be given and we obtain 

)()1()( 1

3

1

2

1

1

1 kuWkxWkxWv rrrr  , )T()T()T( 1

3

2

31

1

2

2

21

1

1

2

11

2

1 vWvWvWv  , )T()1( 2

1vkx                                 

2

12

2
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1

2

1

2

1 )(
i
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Moreover, the NN model can be converted into the following LDI representation by renumbering the matrices: 
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where 
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0.1588 2.5790
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, 

8 2222

0.4879 2.5889

1 0
A A

 
   

 
  (12) 

The profile of the stepped pavement is shown in Figure 3 (a). As seen in Figs. 3 (b), when road turbulence 

occurs, the active suspension control force appears within 1 s. In figures 3 (c) and 3 (d), the vertical shift and pitching 

shift of the vehicle body under of the input step is described. The motion amplitude of the controller with gray signal 

predictor is smaller than without controller. 

 

Fig 2. The random data and proposed fuzzy DGM (2,1) model. 

 

              (a) Step road profile                          (b) Control signals u1 &u2  

 

             (c) Vertical displacement of car                      (d) Pitch motion  

Fig 3. Control force simulation for predictors. 
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Figs. 4-7 are the modeling error which have been bounded via the assumption of LDI based approximation with control 

via NN model. Furthermore, the assumption of  )()()(  )( 
1 1
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 are satisfied from the 

illustration in Figs. 4-7.   
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Fig 4. The model error of the vertical displacement of car with control.  
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Fig 5. The model error of pitch motion with control.  
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Fig 6. The model error of the vertical displacement of front wheel.  
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Fig 7. The model error of the vertical displacement of rear wheel with control.  
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CONCLUSIONS 

This paper describes a new assumption system, demonstrated by the gray model that assisted the LDI neural 

network, that uses GM (1,1) to predict signals and learns the error of assuming DGM (2,1). They combine the outputs 

of DGM (2,1) and NN after time conversion. The simulation results show that the effectiveness of the intelligent 

prediction system is better than that traditional way. Therefore, it laid a basic foundation for the integration of the active 

suspension system in the MEW. First, through experimental processes. We considered the nonlinear nature of the active 

suspension and Lyapunov's theory, the law of control for the estimation of ma hardness and damping force parameters 

and the monitoring of the ideal suspension motion are mentioned. The stability and system probability is proved by 

Lyapunov such theorem. In addition, the gray DGM (2,1) model is implemented in the controller to assume the 

suspension movement in advance. The simulation results showed that the proposed method can be without synoptic 

stabilize the discrete-time nonlinear system. By finding the solution of controlled systems, the advantages of the EBA 

model also provide flexibility and possibility.  
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