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ABSTRACT 

Navigation is an essential skill for autonomous robots, and it becomes a cumbersome task in human populated 
environments. Robots need to perform the tasks without disturbing the humans around them and ensure comfort and 
safety of humans as well. It is further influenced by various factors like social norms, geometry of environment, and 
surrounding people. It is essential to comprehend three components, i.e., social conventions (SC), human motion 
(HM), and context aware mapping (CAM), for establishing effective socially aware robot navigation (SARN). This 
article discusses these different aspects of these components, which should be taken into consideration while 
designing an efficient and optimal SARN. Further, it reports recent experiments conducted by different institutes 
pertaining to these components. 
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INTRODUCTION 

The applications of robotics are growing day by day. Robots are no more limited to industry environments. With 
advancements in technology, the robots are moving into social environments like homes and workplaces. The advent 
of robots in social structures will bring wide range of opportunities for social robotics. However, the success of these 
applications will be highly dependent on how robots adapt their behavior as per the social expectations. One of the 
crucial factors for how robot will adapt to its surroundings as per the social expectations is navigation. Human aware 
robot navigation can be considered as intersection between robot motion planning and human robot interaction (HRI). 
As humans and robots are going to share the same physical space, robots’ navigation not only needs to be safe, but 
needs to be sociable as well. 

 
In any case, if the robot does not perform navigation properly as per social navigation norms, it can cause an 

unfavorable social response (Hamilton, 2018; Mutlu and Forlizzi, 2008). Here, social navigation norms refer to robots 
behaving in a civilized way while navigating within humans. For example, altogether for a robot to explore inside a 
workplace setting, the robot must be completely customized, programmed, and aware as per the environmental 
factors. But the equation completely changes when humans become part of that environment setting. Without a 
careful comprehension of its condition or the capacity to recognize its condition, a robot can experience some 
significant obstructions by which individuals might get injured. That is why the navigation of any mobile robot in a 
social environment plays an extremely important role and needs to be understood completely while designing a 
socially aware robot navigation (SARN) framework for any environment.  
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Figure 1. Components of socially aware robot navigation. 
 

Every component is connected to computation block, which ultimately processes every piece of data to actuate 
output devices to perform SARN. Although every component has its own significance, in order to get acceptance in 
human society, robots need to respect the social conventions, understand human motion, and follow context aware 
mapping. So, this article discusses different aspects of SC, HM, and CAM, which should be taken into consideration 
while designing SARN, and reports different experiments conducted by different institutes pertaining to these 
components. Further, Table 1 concisely depicts different articles that have discussed various factors of SC, HM, and 
CAM. 

 
 
 

Humans are often driven by some inner motivation towards a goal. Furthermore, predicting accurate human 
trajectory in real time is a complex task as humans follow a nonlinear pattern. Prediction is challenged by a number 
of factors like complexity of human behavior, surrounding people, social rules, and environment. Most of these 
factors are not directly visible and need to be inferred from context. As human environments are designed for human 
convenience, robots need to understand the context in the form of Context Aware Mapping (CAM) for effective 
SARN. Human Motion  

 
(HM) has further many forms like walking through space or full body motion, facial expressions, gestures, etc. 

So, basically, human motion is influenced by both physical and social constraints in a particular environment 
(indoor/outdoor) and context. We need to cater to both while performing human motion prediction for SARN.  

 
Here, we propose a framework that caters to reactive and deliberate components for effective SARN. In social 

environment setting, a robot should be reactive enough to deal with the environment constraints in which it is situated, 
and it should also be deliberate, so that it can plan the complete motion before execution. Reactive paradigm is more 
focused towards local planning (a little time ahead of real execution), which is taken care of by the social convention 
(SC) block that caters to the norms of the society, which provides the support to civil order and solution to the 
conflicting situations. Different situations like respecting and following the queue, moving left-/ right-hand as per 
country, asking for pass permission wherever required, etc. are the examples of the situations that are catered by 
social conventions, which are used to plan little time ahead of real execution. The deliberate paradigm plans the 
complete motion, which is taken care of by human motion (HM) block that caters to the velocity and geometry of the 
robot path, which is primarily focused on the energy optimization. As proxemics deals with distance, motion is more 
vital than distance, as it caters to the naturalness in robot motion, which comes via predicting human motion in 
advance, by adapting to velocity and directions of humans. Further, context aware mapping (CAM) represents the 
movement of humans and robots in the form of metric maps. This data (in the form of metric maps) helps calculate 
the cost function based upon the state of objects, humans, and current activity in the environment, which is used by 
both reactive and deliberate paradigms to improve the system tolerance for unseen environments. It is also to be noted 
that tracking humans and obstacles is a cumbersome job for a robot in motion. So, it is always beneficial to predict 
the human trajectories in order to plan the robot navigation in advance. Also, the robot needs to be equipped for the 
overcrowded environments where it has to navigate through the congested spaces. So, the integration of SC, HM 
prediction, and CAM can lead to social awareness (Chik et al., 2016), which in turn boosts the efficiency of SARN. 
Figure 1 illustrates the proposed framework that incorporates the aforementioned components for designing SARN 
strategies. 
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Therefore, in this article, we focus on the following: 
•   A framework for designing SARN that incorporates the three main components, i.e., social convention, 

human motion prediction, and context aware mapping, the integration of which is vital for increasing 
efficiency of SARN. 

•   Discussion of recent experiments conducted by various institutes in the domain of social convention, 
human motion, and context aware mapping, which supported the applicability of the framework. 

 

SOCIAL CONVENTIONS 

Behaviors created and acknowledged by society that help humans to comprehend goals of others and encourage 
the correspondence are called social conventions (Parry and le Roux, 2020). The conventions required for robot 
navigations should possess safe and understandable behavior. We have further divided them into three areas (Rossi 
et al., 2020; Schreck et al., 2019; Vega et al., 2019a), i.e., social behavior, proxemics, and social robot abilities as 
discussed below. 

 

Social Behavior 

There are different perspectives from which human behavior can be studied, for example, anthropology, 
psychology, and sociology. It is very important to understand how surrounding space is managed by humans while 
navigating, in order to design a navigation strategy for robots in human populated environment.  

 
When the personal space of an individual is invaded by another individual, they do not try to escape or attack 

other individuals but inform others via social cues like face expressions, gestures, etc. (Jarvis, 2019). So, the term 
social cue illustrates the verbal and nonverbal messages. These cues can be derived from proximity, body posture, 
facial expressions, etc. Current sensing technologies are already performing well in detecting social cues (Daily et 
al., 2017). The real challenge lies in connecting right social cue to right social signal. Furthermore, context plays a 
crucial role in establishing this connection. Many researchers have tried to connect social signals to social cues as 
shown in Table 2 (Singh et al., 2019; Vinciarelli et al., 2008).  

 
Table 2. Linkage of social signals to social cues. 

 

Social 
Signals 

Social cues 

Height Body 
Shape 

Hand 
Gestures Walking Facial 

Expressions 
Gaze 

Behavior Vocalization Distance 

Emotion   ✓  ✓ ✓ ✓  

Personality  ✓  ✓ ✓ ✓ ✓ ✓ 

Status ✓   ✓ ✓ ✓  ✓ 

Dominance ✓ ✓  ✓ ✓ ✓ ✓  

Persuasion   ✓  ✓ ✓ ✓ ✓ 

Regulation   ✓  ✓ ✓ ✓  

 
 

Table 1. Concise literature review. 
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Ballan et al., 2016     ✓    

Bartoli et al., 2018     ✓   ✓ 

Bera et al., 2016    ✓     

Charalampous et al., 
2017       ✓ ✓ 

Che et al., 2020        ✓ 

Chen et al., 2017 ✓ ✓   ✓    

Hu et al., 2019   ✓      

Jarvis, 2019 ✓        

Jeong et al., 2018       ✓  

Khelloufi et al., 2020       ✓  

Kooij et al., 2019    ✓   ✓  

Macenski et al., 2020        ✓ 

Mehta et al., 2016  ✓  ✓      

Narayanan et al., 2020 ✓ ✓       

Radwan et al., 2018     ✓   ✓ 

Taylor et al., 2020     ✓   ✓ 

Tolani et al., 2020       ✓  

Truong and Ngo, 2017 ✓ ✓       

Vasishta et al., 2017      ✓ ✓  

Vasquez, 2016      ✓   

Vega et al., 2019b ✓ ✓       
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Figure 3. Different types of group space configurations. 
 

It has a strong relation with eye contact, which is further affected by culture and gender as well. Proxemics goes 
hand in hand with other factors like robot appearance, speed, and approach direction. Many experiments (Narayanan 
et al., 2020; Rios-Martinez et al., 2015; Singh et al., 2019; Vega et al., 2019b) have been conducted for understanding 
human aware robot navigation. Although it depends upon situations, in many experiments, it has been demonstrated 
that slower speed robots are preferred. While closer distances are acceptable, the robot that looks like a humanoid 
and the robot rotating its head before initiating motion are considered more effective. 
 

Social Robot Abilities 

In order to effectively deploy SARN, robots must establish natural interaction similar to humans. Robots must 
consider the social requirement while navigating like human comfort, need, and preferences.  Robots must be aware 
of the surrounding and treat humans differently from objects while navigating. Robots navigations should be 
predictable and easily understood by humans; then, it will only be considered as SARN in real terms. Social robot 
abilities can be further classified into four types, i.e., avoiding collision, passing humans, following humans, and 
moving along with humans (Hu et al., 2019) as shown in Figure 4. 

 

	  

Figure 4. (a) Avoiding collision. (b) Passing humans. (c) Following humans. (d) Moving along with humans. 

The navigation behavior of robot must lead to social comfort, where social comfort can be defined as the absence 
of stress and irritation while interacting with robots. As per the above discussion, social comfort is very subjective 
matter and cannot be measured directly. There are various studies that make use of distance, visual behavior, and 
more specifically proxemics to empower the SARN system to cater to social comfort (Jicol et al., 2019; Narayanan 
et al., 2020). 
 

Proxemics 

The study of maintaining spatial distances in various interpersonal and social spaces is called proxemics. A robot 
in socially aware navigation should be able to manage four kinds of spaces, i.e., space related to individuals, space 
related to groups, interaction space between humans and objects, and human robot interaction space (Lindner, 2015). 
The personal space related to individuals can be defined as the minimum space that individuals maintain in order to 
avoid the discomfort. A classification of space around an individual is shown in Figure 2. 

 
 

	  

Figure 2. Classification of personal space (Walters et al., 2005). 
 

As far as the space related to groups is concerned, it is the coverage of space when two or more individuals are 
engaged in conversation. The communication between the individuals can be verbal or nonverbal. Usually, group 
space configurations can be divided into seven types (Vega et al., 2019b) as shown in Figure 3. One also needs to 
consider that the space around an individual is situation-dependent and is dynamic in nature. Another aspect of space 
is information process space, which is nothing but the space that an individual maintains from the obstacles while 
planning its trajectory. 
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Overall, the detailed knowledge of human representation and space affordances can help plan an effective 
SARN. Few real world experiments (Chen et al., 2017; Mehta et al., 2016; Truong and Ngo, 2017; Vega et al., 2019b) 
were conducted by different institutes in the domain of SARN while taking social conventions into account, as 
illustrated in Table 3. They report the study design depicting the number of participants and quantities measured 
during the experiment. Further, they report the type of experiment whether it is simulation-based or a real-world 
demonstration, and environment depicting the type of surroundings and group space configurations as discussed in 
proxemics section. Lastly, they also report the abilities of the robot deployed in the respective experiments, as 
discussed in the preceding section. Truong et al. (2017) and Vega et al. (2019b) proposed socially aware robot 
navigation systems by taking proxemics and social behavior into consideration. They carried out their experiments 
in a laboratory setup, where both of the systems performed well on social acceptability but lacked energy 
optimization. Mehta et al. (2016) proposed an autonomous navigation model by taking social robot abilities like 
avoiding collision, passing humans, following humans, and moving along with humans into consideration while 
respecting personal space. Their model was based on multipolicy decision making, but no discussion was made on 
energy optimization. Chen et al. (2017) proposed an autonomous navigation model using deep reinforcement learning 
while taking care of social conventions in a time efficient manner. So, they combined social conventions and pattern 
based modeling, which in turn led to better socially aware motion planning. 

  

MODELLING HUMAN MOTION 

 
Modelling human motion is a complex procedure that aims towards generation of future frames based upon the 

observed human motion state. It is one of the crucial and vital parts of robot intelligence, which enables the robot to 
efficiently plan its path (Ferrer, 2020). Different human motion modelling techniques use various approaches to 
represent, learn, and solve the tasks. It can be further subdivided in three types, i.e., Physics, Pattern, and Planning 
based approaches (Ferrer, 2020) as discussed below. 
 

Physics Based Approaches 

Physics based approach makes use of Newton laws of motion to predict human trajectory. A variety of physics 
based approaches perform decently in predicting how humans move and interact within environments (Møgelmose 
et al., 2015). Physics based approaches are further divided into Single- and Multimodel approaches involving 
different modes of dynamics. 

 

 

Figure 5. (a) Map based model. (b) Dynamic environment based model. 
 
Single-model approach refers to representing human motion state in the form of position and velocity. It is 

accomplished by representing the motion state in the form of kinematic model excluding the forces that govern the 

Collision avoidance is established by social force model, which constantly monitors human trajectory and 
personal space when humans approach the robot from the opposite direction. In passing humans, robots calculate the 
cost for every trajectory it can select by considering parameters like distance and choosing between left or right pass 
when humans are stationary.  

 
Table 3. SARN experiments by different institutes. 

 
Institutes Study design Experiment Type Environment Robot abilities 

•  Massachusetts 
Institute of 
Technology 

•  IBM Research 
Center  
(Chen et al., 
2017) 

Subjects 
•   Many pedestrians 

Measure 
•   Time to goal 
•   Minimum 

separation 
distance 

•   Simulation  
•   Real World 

Crowed pedestrian 
rich environment 
moving 
everywhere 
 
 

•   Avoiding 
collision 

•   Passing humans  
•   Following 

humans 
•   Moving along 

with humans 

•  University of 
Brunei (Truong 
and Ngo, 2017) 

Subjects 
•   Three 

participants 
Measure 
•   Distance 
•   Human velocity 
•   Robot Velocity 

•   Simulation  
•   Real World 

Laboratory room 
with stationary 
individuals in 
group space 
configurations 

•   Avoiding 
collision 

•   Passing humans  

•  Universidad de 
Extremadura  

•  Aston 
University 
(Vega et al., 
2019b) 

Subjects 
•   Two participants  

Measure 
•   Euclidean 

distance 
•   Crowd density  

•   Real World 

Laboratory room 
with stationary 
individuals in 
group space 
configurations 

•   Avoiding 
collision 

•   Passing humans  
 

•  University of 
Michigan 
(Mehta et al., 
2016) 

Subjects 
•   Nine participants  

Measure 
•   Relative distance 
•   Robot velocity 
•   Time to goal 

•   Simulation  
•   Real World 

Corridor setting 
with moving 
individuals and 
stationary 
individuals in 
group space 
configurations  

•   Avoiding 
collision 

•   Passing humans  
•   Following 

humans 

 
While following humans, navigation is carried out in crowded scenarios by robots considering a target location 

and selection of a human leader to be followed. Moving along with humans is carried out in environments like 
museums, airports, etc., while taking optimum robot speed and braking into consideration. 
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Overall, the detailed knowledge of human representation and space affordances can help plan an effective 
SARN. Few real world experiments (Chen et al., 2017; Mehta et al., 2016; Truong and Ngo, 2017; Vega et al., 2019b) 
were conducted by different institutes in the domain of SARN while taking social conventions into account, as 
illustrated in Table 3. They report the study design depicting the number of participants and quantities measured 
during the experiment. Further, they report the type of experiment whether it is simulation-based or a real-world 
demonstration, and environment depicting the type of surroundings and group space configurations as discussed in 
proxemics section. Lastly, they also report the abilities of the robot deployed in the respective experiments, as 
discussed in the preceding section. Truong et al. (2017) and Vega et al. (2019b) proposed socially aware robot 
navigation systems by taking proxemics and social behavior into consideration. They carried out their experiments 
in a laboratory setup, where both of the systems performed well on social acceptability but lacked energy 
optimization. Mehta et al. (2016) proposed an autonomous navigation model by taking social robot abilities like 
avoiding collision, passing humans, following humans, and moving along with humans into consideration while 
respecting personal space. Their model was based on multipolicy decision making, but no discussion was made on 
energy optimization. Chen et al. (2017) proposed an autonomous navigation model using deep reinforcement learning 
while taking care of social conventions in a time efficient manner. So, they combined social conventions and pattern 
based modeling, which in turn led to better socially aware motion planning. 

  

MODELLING HUMAN MOTION 

 
Modelling human motion is a complex procedure that aims towards generation of future frames based upon the 

observed human motion state. It is one of the crucial and vital parts of robot intelligence, which enables the robot to 
efficiently plan its path (Ferrer, 2020). Different human motion modelling techniques use various approaches to 
represent, learn, and solve the tasks. It can be further subdivided in three types, i.e., Physics, Pattern, and Planning 
based approaches (Ferrer, 2020) as discussed below. 
 

Physics Based Approaches 

Physics based approach makes use of Newton laws of motion to predict human trajectory. A variety of physics 
based approaches perform decently in predicting how humans move and interact within environments (Møgelmose 
et al., 2015). Physics based approaches are further divided into Single- and Multimodel approaches involving 
different modes of dynamics. 

 

 

Figure 5. (a) Map based model. (b) Dynamic environment based model. 
 
Single-model approach refers to representing human motion state in the form of position and velocity. It is 

accomplished by representing the motion state in the form of kinematic model excluding the forces that govern the 

Collision avoidance is established by social force model, which constantly monitors human trajectory and 
personal space when humans approach the robot from the opposite direction. In passing humans, robots calculate the 
cost for every trajectory it can select by considering parameters like distance and choosing between left or right pass 
when humans are stationary.  

 
Table 3. SARN experiments by different institutes. 
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(Chen et al., 
2017) 
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Measure 
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separation 
distance 

•   Simulation  
•   Real World 

Crowed pedestrian 
rich environment 
moving 
everywhere 
 
 

•   Avoiding 
collision 

•   Passing humans  
•   Following 

humans 
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with humans 
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Brunei (Truong 
and Ngo, 2017) 
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•   Three 

participants 
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•   Human velocity 
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•   Simulation  
•   Real World 

Laboratory room 
with stationary 
individuals in 
group space 
configurations 

•   Avoiding 
collision 

•   Passing humans  

•  Universidad de 
Extremadura  

•  Aston 
University 
(Vega et al., 
2019b) 
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•   Two participants  

Measure 
•   Euclidean 

distance 
•   Crowd density  

•   Real World 

Laboratory room 
with stationary 
individuals in 
group space 
configurations 

•   Avoiding 
collision 

•   Passing humans  
 

•  University of 
Michigan 
(Mehta et al., 
2016) 

Subjects 
•   Nine participants  

Measure 
•   Relative distance 
•   Robot velocity 
•   Time to goal 

•   Simulation  
•   Real World 

Corridor setting 
with moving 
individuals and 
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individuals in 
group space 
configurations  

•   Avoiding 
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•   Following 

humans 

 
While following humans, navigation is carried out in crowded scenarios by robots considering a target location 

and selection of a human leader to be followed. Moving along with humans is carried out in environments like 
museums, airports, etc., while taking optimum robot speed and braking into consideration. 
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Planning Based Approaches 

Planning based approaches build on the paradigm of Sense-Reason-Act, which is reasoning the current state of 
human motion and acting accordingly, to choose the best possible navigation path for robot. These approaches can 
be classified into two types, that is, forward planning based and inverse planning based approaches as discussed 
below. 

 

 

Figure 7. (a) Forward planning. (b) Inverse planning. 
 

Forward planning based approaches use a predefined function for planning motion and path. A probabilistic 
dynamic model utilizes distance between robot and destination as a metric to predict the next state of humans 
(Vasishta et al., 2017). In this process, custom cost functions are developed for various environmental entities such 
as road and crosswalk, whereas, in inverse planning based approaches, the cost function is calculated by observing 
the humans navigating in the current setting by utilizing imitation techniques (Osa et al., 2018). These approaches 
select the robot trajectory by transforming it into optimization problem, while taking environment semantics, cost 
function, and multihuman interaction into consideration. A pictorial representation of forward and inverse planning 
based approaches is shown in Figure 7. 

 
In the last decade, the field of human motion prediction has seen tremendous improvements in terms of algorithm 

performance and quantum of application scenarios catered. Different approaches as discussed above are fruitful in 
different scenarios. Physics based approached are very helpful in static environments or where modelling of human 
motion is possible via mathematical functions. Pattern based approaches work well for large environments, e.g., 
public places, where dynamics are unknown, and multiple pedestrians/humans are involved, whereas when robots 
and human goals can be explicitly defined in an environment, then planning based approaches are extremely suitable. 
Few real world experiments (Bartoli et al., 2018; Bera et al., 2016; Radwan et al., 2018; Vasquez, 2016) conducted 
by different institutes in the domain of human motion prediction are illustrated in Table 4.  

 
Table 4. Human motion prediction experiments by different institutes. 

 

Institutes Study design Environment Approach used 

•  Centre Inria Grenoble, 
Europe (Vasquez, 2016) 

Subjects 
•   Many pedestrians 

Measure 
•   Modified Hausdorff 

Distance 

16 urban 
scenarios  
 
Experiment Type 
•   Real World 

Forward Planning  
(Planning based approach) 

motion. Considering external forces into account and in order to cater to context of the environment, the model will 
be changed into a dynamic model, i.e., map based model or dynamic environment based model, as shown in Figure 
5. 

Map based model is an extension to single model by considering the map information into the system, where a 
path planning robot extracts the location of walls, turns, diversions, and other static environment cues from the map 
in order to improve its navigation (Batkovic et al., 2018). Furthermore, inclusion of dynamic agents, i.e., humans into 
the system along with static environment cues, leads to dynamic environment based model. In this model, the robot 
takes into consideration the attractive forces of the desired location where it has to reach repulsive forces of obstacles 
and dynamic agents on the way, in order to achieve effective SARN. Including different motion modes, along with 
map and dynamic environment based models, leads to multimodel approaches (Kooij et al., 2019). Motion mode may 
refer to turns, linear movement, maneuvers, human velocity, human head orientation, etc. in order to describe the 
complex motion behavior of dynamic agents.  
 

Pattern Based Approaches 

Pattern based approaches exploit the power of data by deploying Sense-Learn-Predict paradigm, which utilizes 
techniques like neural networks, Markov models, etc. Broadly, these approaches can be classified into two types, that 
is, sequential and nonsequential models.  

 
Sequential models are built on the belief that the current position and velocity can be explained, based on the 

data from the previous-state’s statistical observations. One of the methods to implement sequential model is local 
transition patterns, i.e., plotting motion pattern probabilities on a grid map (Vasishta et al., 2018). Furthermore, 
various other methods such as instantaneous topological map, Voronoi graphs, etc. are combined with local transition 
patterns to predict human motion (Ballan et al., 2016). Recent sequential models make time series prediction of 
human motion by utilizing neural networks. Another popular approach is long short term memory (LSTM) to predict 
human activity patterns via long-term observations by observing the motion patterns for several weeks and including 
contextual information as well (Sun et al., 2018). On the other hand, nonsequential approaches intend to learn human 
motion pattern by clustering the trajectories, observed over a long term (Bera et al., 2017). It is commonly realized 
by employing unsupervised clustering techniques in order to determine the future trajectories of humans in a social 
setting. In order to have a better understanding, a pictorial representation of sequential and nonsequential approaches 
is shown in Figure 6. 

 

 

Figure 6. (a) Sequential model. (b) Nonsequential model. 
 

 



141Kiran Jot Singh, Divneet Singh Kapoor and Balwinder Singh Sohi

Planning Based Approaches 

Planning based approaches build on the paradigm of Sense-Reason-Act, which is reasoning the current state of 
human motion and acting accordingly, to choose the best possible navigation path for robot. These approaches can 
be classified into two types, that is, forward planning based and inverse planning based approaches as discussed 
below. 

 

 

Figure 7. (a) Forward planning. (b) Inverse planning. 
 

Forward planning based approaches use a predefined function for planning motion and path. A probabilistic 
dynamic model utilizes distance between robot and destination as a metric to predict the next state of humans 
(Vasishta et al., 2017). In this process, custom cost functions are developed for various environmental entities such 
as road and crosswalk, whereas, in inverse planning based approaches, the cost function is calculated by observing 
the humans navigating in the current setting by utilizing imitation techniques (Osa et al., 2018). These approaches 
select the robot trajectory by transforming it into optimization problem, while taking environment semantics, cost 
function, and multihuman interaction into consideration. A pictorial representation of forward and inverse planning 
based approaches is shown in Figure 7. 

 
In the last decade, the field of human motion prediction has seen tremendous improvements in terms of algorithm 

performance and quantum of application scenarios catered. Different approaches as discussed above are fruitful in 
different scenarios. Physics based approached are very helpful in static environments or where modelling of human 
motion is possible via mathematical functions. Pattern based approaches work well for large environments, e.g., 
public places, where dynamics are unknown, and multiple pedestrians/humans are involved, whereas when robots 
and human goals can be explicitly defined in an environment, then planning based approaches are extremely suitable. 
Few real world experiments (Bartoli et al., 2018; Bera et al., 2016; Radwan et al., 2018; Vasquez, 2016) conducted 
by different institutes in the domain of human motion prediction are illustrated in Table 4.  

 
Table 4. Human motion prediction experiments by different institutes. 

 

Institutes Study design Environment Approach used 

•  Centre Inria Grenoble, 
Europe (Vasquez, 2016) 

Subjects 
•   Many pedestrians 

Measure 
•   Modified Hausdorff 

Distance 

16 urban 
scenarios  
 
Experiment Type 
•   Real World 

Forward Planning  
(Planning based approach) 
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be changed into a dynamic model, i.e., map based model or dynamic environment based model, as shown in Figure 
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Map based model is an extension to single model by considering the map information into the system, where a 
path planning robot extracts the location of walls, turns, diversions, and other static environment cues from the map 
in order to improve its navigation (Batkovic et al., 2018). Furthermore, inclusion of dynamic agents, i.e., humans into 
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and dynamic agents on the way, in order to achieve effective SARN. Including different motion modes, along with 
map and dynamic environment based models, leads to multimodel approaches (Kooij et al., 2019). Motion mode may 
refer to turns, linear movement, maneuvers, human velocity, human head orientation, etc. in order to describe the 
complex motion behavior of dynamic agents.  
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Pattern based approaches exploit the power of data by deploying Sense-Learn-Predict paradigm, which utilizes 
techniques like neural networks, Markov models, etc. Broadly, these approaches can be classified into two types, that 
is, sequential and nonsequential models.  
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transition patterns, i.e., plotting motion pattern probabilities on a grid map (Vasishta et al., 2018). Furthermore, 
various other methods such as instantaneous topological map, Voronoi graphs, etc. are combined with local transition 
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One of the methods to perform indoor single scene semantic mapping is to use a color camera integrated with 

depth data, e.g., red-green-blue-depth (RGB-D). Further, this data is transformed into a different color space like 
La*B* and made use of conditional random field (CRF) model and random forest model to perform segmentation of 
the scene (Harada et al., 2014). Another research performs context aware semantic mapping by utilizing metric 
coordinates to represent high-level feature, e.g., door signs, objects, etc. Also, a multimodel interaction was used to 
represent semantic landmarks to demonstrate context aware navigation by making use of annotated landmarks and 
human tracking (Cosgun and Christensen, 2018).  

 
On the other side, outdoor scene semantic mapping makes use of stereo cameras for RGB and depth data to 

perform feature extraction and segmentation at multiple scales. Usually, multi model approach is used for the fusion 
of different field of views (FoVs) in conjunction with CRF to accurately represent the outdoor scene, which is also 
understandable by humans as well, as shown in Figure 8 (Jeong et al., 2018). 

 

 

Figure 8. Semantic segmentation with class labels (Jeong et al., 2018).  
 

Social Mapping 

The most anticipated step after establishing semantic mapping is to take human factors like sociability, 
naturalness, safety, and comfort into consideration, which leads to the field of social mapping. For example, a robot 
is navigating in a human centered environment, and it chooses not to pass through a group of people chatting; then, 
it is following social mapping.  

 
Safety and visibility are the two key criteria to form a social map for indoor environments. Safety caters to the 

distance between human and robot. Researchers usually make use of cost function approach in conjunction with 
theory of proxemics to evaluate the distance between human and robot and take desired action (Charalampous et al., 
2017). The visibility helps form the social map, building on the criterion that robot must be in line of sight of human 

•  University of Freiburg 
(Radwan et al., 2018) 

Subjects 
•   Many pedestrians 

Measure 
•   Final Displacement 

Error 

Traffic light 
scenarios  
 
Experiment Type 
Real World 

LSTM – Sequential Model 
(Pattern based approach)  

•  University of North 
Carolina (Bera et al., 2016) 

Subjects 
•   Many pedestrians 

Measure 
•   Prediction Accuracy 

Different public 
places 
 
Experiment Type 
Simulation 

Dynamic environment 
based model  
(Physics based approach) 

•  University of Florence  
•  University of Padova 

(Bartoli et al., 2018) 

Subjects 
•   Visitors at museum 

Measure 
•   Mean Euclidean 

Distance  

Museum 
 
Experiment Type 
Real World 

LSTM – Sequential Model 
(Pattern based approach) 

 
 
It reports the study design depicting the number of participants and quantities measured during the experiment. 

Further, it reports the type of environment depicting the type of surroundings and experiment, whether it is 
simulation-based or a real-world demonstration. Lastly, it also reports the type of approach used for human motion 
prediction as discussed in the above sections. Vasquez (2016) proposed a novel planning based algorithm for the 
prediction of human motion, which was based on forward planning. This algorithm used fast marching method in 
parallel fashion and was able to reduce the computation time by a factor of 30 as compared to Markov decision 
process based models. Bera et al. (2016) proposed path prediction based on global and local movement patterns on 
different videos captured by overhead cameras, but their experiment lacked testing their model with the robots. Bartoli 
et al. (2018) and Radwan et al. (2018) models performed well by combining human motion approaches with context 
aware mapping by utilizing LSTM sequential model to achieve energy optimization as well as offered better system 
tolerance to new unseen scenarios.    

 

 CONTEXT AWARE MAPPING  

Various service industries built around a human centered social setting like hotels, offices, hospitals, and even 
homes are going to utilize more and more robots for package delivery, elderly care, cleaning, etc. A big step in 
effective SARN is context aware mapping technology to bridge the gap between robot’s geometrical measures 
interpretation and understanding of spatial relations in human environments. The context aware mapping is further 
divided into two parts, that is, semantic mapping and social mapping as described below. 
 

Semantic Mapping 

A robot with semantic mapping capability makes the use of high-level modalities such as optical character 
recognition (OCR), object recognition, and distance measurements in order to formulate its geometrical 
interpretation. It appends the features understandable by humans on top of metric maps in order to enhance its 
geometrical interpretation and further communicating the same in human compatible manner.  
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different videos captured by overhead cameras, but their experiment lacked testing their model with the robots. Bartoli 
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•  University of California  
•  Google Brain Research 

(Tolani et al., 2020) 

Subjects 
•   Single human 

Measure 
•   Time 
•   Acceleration 
•   Jerk 

Human navigating in indoor 
setting 
 
Experiment Type 
•   Real World 
•   Simulation 

Semantic mapping 
(Convolutional neural 
network based perception 
model)  

•  University of California 
(Taylor et al., 2020) 

Subjects 
•   Many 

pedestrians 
Measure 
•   Accuracy 
•   Precision 
•   Recall 
•   Depth 

Human navigating in 
outdoor setting at different 
public places 
 
Experiment Type 
•   Real World 

Social mapping 
(Hierarchical tree) 

•  Center for Development 
of Advanced 
Technologies 

•  University Of Science 
And Technology 

•  Universite de 
Montpellier (Khelloufi 
et al., 2020) 

Subjects 
•   Single human 

Measure 
•   Distance 
•   Orientation 
•    Velocity 

Different indoor settings 
 
Experiment Type 
•   Real World 
•   Simulation 

Semantic mapping 
(Tentacles-based 
approach) 

 
Furthermore, SFM is also deployed in conjunction with multihypothesis approach to predict human trajectory 

(Senft et al., 2020). These hypotheses are the combinations revolving around human interactions, which further utilize 
joint probability functions to evaluate humans in the scene. 

 
Overall, a lot of research is going on to bridge the gaps in human robot interaction by enhancing the capabilities 

of robots in order to make robots obey the social norms. The social mapping emphasizes on the aspect of human 
robot coexistence and robot navigation in human centered environments. Motion pattern of humans is considered in 
outdoor situations, whereas, in indoor setting, different parameters like positioning of humans and limited space for 
robot navigation come into play. Few recent real world/simulation experiments (Khelloufi et al., 2020; Macenski et 
al., 2020; Taylor et al., 2020; Tolani et al., 2020) conducted by different institutes in the domain of context aware 
mapping are shown in Table 5.  

 
It reports the study design depicting the subjects and quantities measured during the experiment. Further, it 

reports the type of environment depicting the type of surroundings and experiment, whether it is simulation-based or 
a real-world demonstration. Lastly, it also reports the type of approach used for mapping as discussed in above 
sections. Tolani et al. (2020) and Khelloufi et al. (2020) used a semantic mapping based approach to detect the 
surrounding obstacles during navigation, but both models lacked adapting to social norms. Macendki et al. (2020) 
proposed a secure message passing framework specifically for safety critical applications. The model lacked dynamic 
obstacle tracing and planning, which will be taken as future work by the authors. Taylor et al. (2020) proposed a 
robot centric group estimation model by utilizing social mapping in conjunction with motion estimation. The 
proposed model performed better in terms of tracking of humans and energy optimization.  

in order to eliminate the element of surprise (Khelloufi et al., 2020; Macenski et al., 2020), as shown in Figure 9. 
Furthermore, one more approach is to develop a perceptual model that also considers cost functions for human 
gestures, speech levels, and relative poses along with the distance parameter (Che et al., 2020). This strategy reduced 
user effort and built the human trust for robot.  

 

 

Figure 9. Social mapping experiment in an indoor environment (Macenski et al., 2020). 
Many social mapping algorithms utilize social force model (SFM) in outdoor environments to predict the human 

motion. SFM builds on the concept that human trajectories can be explained by social field and forces. The individual 
trajectory of a human is seen in conjunction with neighboring obstacles acting as repulsive forces and nearby humans. 
So, based on the forces exerted by nearby objects and humans, social force analysis shapes social maps (Taylor et al., 
2020).  

 
Table 5.Context aware mapping experiments by different institutes. 

 

Institutes Study design Environment Approach used 

•  Samsung Research 
•   Rey Juan Carlos 

University  
•  Contextual Robotics 

Institute 
•  Rey Juan Carlos 

University (Macenski et 
al., 2020) 

Subjects 
•   Many 

pedestrians 
Measure 
•   Timestamp 
•   Distance 
•   Velocity 
•   Recoveries 

executed 

Human-filled environment 
in a 
University setting 
(Indoor setting) 
 
Experiment Type 
•   Real World 

Social mapping 
(Behavior tree) 
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•  University of California  
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(Tolani et al., 2020) 
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•   Jerk 

Human navigating in indoor 
setting 
 
Experiment Type 
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•   Simulation 
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network based perception 
model)  
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(Taylor et al., 2020) 
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•   Depth 

Human navigating in 
outdoor setting at different 
public places 
 
Experiment Type 
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Montpellier (Khelloufi 
et al., 2020) 
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Experiment Type 
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Figure 9. Social mapping experiment in an indoor environment (Macenski et al., 2020). 
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In a nutshell, we have seen that social convention block makes the robot follow social norms, which in turn 
elevates its acceptability among humans. Human motion prediction supports the robot in path planning in advance, 
which leads to time saving as well as energy optimization. Lastly, context aware mapping improves the accuracy and 
tolerance of the robot in unseen environments. Hence, integration of these three components will bring all the benefits 
together to enhance the acceptability of the robot for various robotics applications as well. 

 

CONCLUSION 

Scientific community is working really hard in robotics, and soon, robots will be the part of our everyday life. 
Making robots understand social conventions, human motion, and context aware mapping will play a key role to turn 
this into reality. This article discusses different aspects of social conventions, human motion, and context aware 
mapping that are essential to establish effective SARN. Furthermore, it gives a brief comparison of experiments, 
conducted by various institutes, in terms of the study design, environment, and approaches used. Artificial 
intelligence and machine learning algorithms are quite popular and used extensively for estimating human motion 
patterns, which are dependent on context. Understanding of context in respect to the semantics of environment for 
efficient trajectory prediction is still an unexplored area. Real human trajectories can be motivated by their personal 
goals, and cooperative behavior of humans is taken for granted, which is not always applicable. So, it is required to 
design the SARN models by taking intention or goal directed human behavior into consideration, in order to cater to 
long-term predictions. In such scenarios, game theory approach can be explored for efficient modelling of human 
behavior. Roboticists need to work along with people from other domains of design, artificial intelligence, and 
psychology in order to better define social conventions, human motion, and context aware mapping in order to realize 
effective SARN. Finally, these components have to be mapped in suitable software process to achieve the desired 
SARN. Future scope includes the incorporation of this framework on the robot MAI (Singh et al., 2018) and to further 
test it in the different social environment settings.    
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