
Bayesian Localization in Real-Time using
Probabilistic Maps and Unscented-Kalman-
Filters

Wael Farag

College of Engineering and Technology, American University of the Middle East, Kuwait.
Corresponding Author: wael.farag@aum.edu.kw

Submitted : 08/07/2020
Revised : 28/04/2021
Accepted : 23/05/2021

ABSTRACT

In this paper, based on the fusion of Lidar and Radar measurement data, high-definition probabilistic maps, and
a tailored particle filter, a Real-Time Monte Carlo Localization (RT_MCL) method for autonomous cars is proposed.
The lidar and radar devices are installed on the ego car, and a customized Unscented Kalman Filter (UKF) is used
for their data fusion. Lidars are accurate in determining objects' positions and have a much higher spatial resolution.
On the other hand, Radars are more accurate in measuring objects velocities and perform well in extreme weather
conditions. Therefore, the merits of both sensors are combined using the UKF to provide pole-like static-objects pose
estimations that are well suited to serve as landmarks for vehicle localization in urban environments. These pose
estimations are then clustered using the Grid-Based Density-Based Spatial Clustering of Applications with Noise
(GB-DBSCAN) algorithm to represent each pole landmarks in the form of a source-point model to reduce
computational cost and memory requirements. A reference map that includes pole landmarks is generated off-line
and extracted from a 3-D lidar to be used by a carefully designed Particle Filter (PF) for accurate ego-car localization.
The particle filter is initialized by the combined GPS+IMU reading and used an ego-car motion model to predict the
states of the particles. The data association between the estimated landmarks by the UKF and that in the reference
map is performed using Iterative Closest Point (ICP) algorithm. The proposed pipeline is implemented using the
high-performance language C++ and utilizes highly optimized math and optimization libraries for best real-time
performance. Extensive simulation studies have been carried out to evaluate the performance of the RT_MCL in both
longitudinal and lateral localization.

Keywords: Sensor Fusion; Kalman filter; Localization; Monte carlo; Particle filter; Autonomous driving;

ADAS; UKF.

1. INTRODUCTION

Improving safety, lowering road accidents, boosting energy efficiency, enhancing comfort, and enriching
driving-experience are the most important driving forces behind equipping present-day cars with Advanced
Driving Assistance Systems (ADAS) (Farag et al. 2018a; Farag, W. 2019a; Farag, W. 2020e). Many ADAS
functions represent incremental steps toward a hypothetical future of safe fully autonomous cars (Farag, W. 2018;

Vorontsov, I.E., Kulakovskiy, I.V. & Makeev, V.J., 2013. Jaccard index based similarity measure to compare
transcription factor binding site models. Algorithms for molecular biology : AMB, 8(1): 23.

Wang, P., Sun, X., Diao, W. & Fu, K., 2019. FMSSD: Feature-merged single-shot detection for multiscale objects
in large-scale remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3377-
3390.

Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M. & Zhang, L., 2018. DOTA: A
large-scale dataset for object detection in aerial images, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3974-3983.

Xiao, T., Li, H., Ouyang, W. & Wang, X., 2016. Learning deep feature representations with domain guided
dropout for person re-identification, Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1249-1258.

Xu, B., Wang, N., Chen, T. & Li, M., 2015. Empirical evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853.

Yang, J., Nguyen, M.N., San, P.P., Li, X. & Krishnaswamy, S., 2015. Deep convolutional neural networks on
multichannel time series for human activity recognition, Ijcai. Buenos Aires, Argentina, pp. 3995-4001.

Yi, D., Lei, Z., Liao, S. & Li, S.Z., 2014. Deep metric learning for person re-identification, 2014 22nd
International Conference on Pattern Recognition. IEEE, pp. 34-39.

Ying, X., Wang, Q., Li, X., Yu, M., Jiang, H., Gao, J., Liu, Z. & Yu, R., 2019. Multi-attention object detection
model in remote sensing images based on multi-scale. IEEE Access, 7: 94508-94519.

Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H. & Patton, R.M., 2015. Optimizing deep learning hyper-
parameters through an evolutionary algorithm, Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, pp. 1-5.

Zhao, Z.-Q., Zheng, P., Xu, S.-t. & Wu, X., 2019. Object detection with deep learning: A review. IEEE
transactions on neural networks and learning systems, 30(11): 3212-3232.

Journal of Engg. Research Vol.10 No. (3A) pp. 109-132 DOI: 10.36909/jer.11073

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters110

Farag et al. 2018c; Farag et al. 2018b; Farag, W. 2019c; Farag et al. 2019c; Farag, W. 2021b).

Future ADAS and autonomous vehicles require accurate and reliable self-localization systems (Farag et al.
2019b; Farag, W. 2019c; Farag, W. 2021a). Accuracy is required because an exact pose estimate plays a major
role in enabling state-of-the-art ADAS functionalities such as the automated-lane following (Farag, W. 2020a;
Farag, W. 2020b; Farag, W. 2020f), or collision avoidance (Farag, W. 2020d). Reliability is required because the
quality of the pose estimate must be preserved even in changing environmental factors to maintain the highest
safety levels (Farag, W. 2019b; Farag, W. 2020c).

Localization based on satellite systems are available for decades and undergone several improvements. Recent
systems like RTK-GPS or DGPS present an efficient solution since they achieve centimeter-level accuracy without
being augmented by any additional algorithms. However, there are several doubts about their reliability. In urban
areas, buildings, or other tall road objects that obstruct the line of sight between the vehicle and the satellites can
decrease accuracy to several meters (Modsching et al. 2006; Carlevaris-Bianco et al. 2015). Therefore, employing
reference dense maps like polygon meshes, grid maps, or point clouds represents an alternative localization
solution with higher reliability (Levinson et al. 2010). However, map-based approaches have a major downside of
requiring a huge size of memory that immediately becomes unaffordable if larger-scale maps to be used. To
overcome this problem, what is called “landmark maps” attracted a lot of interest (Woo et al. 2019). In these
maps, massive amounts of raw sensory data points (lidar, radar, and/or camera) are condensed into a relatively
much small number of distinct and marked features. This way the required memory usage can be decreased by
several orders of magnitude (Kummerle et al. 2019).

In (Kuutti et al. 2018) it was demonstrated that, in terms of performance, LiDAR techniques hold the most
promise for the localization of autonomous applications; however, the high power and processing requirements,
as well as the high cost, make them unfeasible in terms of cost-efficiency and commercialization. As a result, more
LiDAR technology optimization, or alternative approaches such as ground penetrating radar localization or vision-
based localization within LiDAR maps could pave the way to commercially viable systems. However, before mass
deployment, additional research work to validate the robustness of these systems, as well as validating their
performance under a variety of driving conditions and refining operation parameters, will be needed.

In this work, a vehicle localization approach, referred to as RT_MCL, for urban environments is proposed. The
RT_MCL relies on pole-like landmarks extracted from lidar/radar fused data. Pole-like landmarks typically take
several forms such as traffic signs, telegraph poles, tree trunks, streetlamps, and bollards. Several features make
them very convenient and reliable in-vehicle localization: a) they are abundant and widespread in urban areas, b)
they rarely get dislocated and stay in their locations for long-time, c) they have well-defined rounded geometrical
shapes that do not get affected with season or weather.

The RT_MCL matches the detected poles by the ego-car sensors with that being registered in a global reference
map. This high-resolution map is being developed precisely off-line using lidar/radar data covering the same which
the ego-car will drive on. The environment in the reference map is modeled, instead of as spatial poles of fixed
positions, as probabilistic poles whereby every pole is represented by its Gaussian distribution over its position-
prospect values. Consequently, Bayesian inference (employed by a particle filter) can favorably weight parts of
the map most likely to be relevant to the ego-car pose, thereby reducing uncertainty and catastrophic errors.
Moreover, to increase the precision of poles detection the RT_MCL uses the Unscented Kalman Filter (UKF) for
sensors data fusion to combine the merits of both lidar and radar and reduces scattering.

111Wael Farag

In contemporary research, several endeavors are carried out to address the problem of vehicle localization
utilizing pole-like landmarks extracted from lidar point-clouds. This problem can be divided into two subproblems:
a) the first one is the pole detection and its position estimation, b) the second one is the pole-based ego-car pose
estimation. For example, Weng et al. (Weng et al. 2018), developed a pole detector by partitioning the space
around the ego-car and counts the number of reflected-scan points per voxel. Detecting poles is done by identifying
the vertically connected stacks of voxels which all exceed a certain pre-specified threshold. Furthermore, the
detector fits a cylinder to all the points associated with the identified stacks of voxels using RANSAC (Fischler et
al. 1981). A particle filter combined with the nearest-neighborhood data association is then used for ego-car pose
estimation. Another example, Sefati et al. (Sefati et al. 2017) focuses his approach of pole detection on removing
the ground plane from the point-cloud received from sensors. The remaining points are projected onto a horizontal
regular grid, then the neighboring cells are clustered based on occupancy and height, and afterward fit a cylinder
to each cluster. The data association is done using the nearest-neighborhood and the pose estimation is performed
using a particle filter. Kummerle et al. (Kummerle et al. 2019) refine further the pose estimate by augmenting the
Sefati et al.’s pole detection method (Sefati et al. 2017) by fitting planes to building facades constructed from point
clouds and fitting lines to lane markings in stereo camera images. Kummerle et al. (Kummerle et al. 2019) adopts
a Monte Carlo method to solve the data association problem but uses nonlinear least-squares optimization to refine
the estimated pose. Schaefer et. al. in (Schaefer et al. 2019) present a complete landmark-based localization system
that relies on poles extracted from 3-D lidar data and is divided into 3 modules: the pole extractor, the mapping
module, and the localization module. The pole detector does not only consider the laser ray endpoints, but also the
free space in between the laser sensor and the endpoints, and to demonstrate reliable and accurate vehicle
localization based on a map of pole landmarks on large time scales. The approach is tested on a long-term dataset
that contains 35 hours of data recorded over 15 months – including varying routes, construction zones, seasonal
and weather changes, and lots of dynamic objects.

The contribution of this paper can be enumerated as follows:

1. Tailoring the UKF algorithm to fuse multiple radars and lidars data to reduce scattering and achieve

more accurate pose estimates for stationary pole-like objects around the ego car in real-time.
2. Tailoring the PF algorithm to employ pole-like landmarks for ego-car pose estimation in real-time.
3. Employing a high-order-generic-object-motion model (5 state variables that suits the most common

road-objects in the development of the UKF and PF to generate more accurate estimates and improve
the overall performance.

4. Representing the poles in the reference map in a probabilistic form that allows Bayesian inference
implemented by the PF to contain map uncertainties and reduce localization errors.

5. Evaluating the gain of fusion by testing the UKF on three different cases (lidar+radar, lidar only, and
radar only).

6. Evaluating the PF performance using different particle populations and under various map uncertainties.
7. Evaluating the real-time performance of both the UKF and PF on a moderate computational platform.
8. Employing the GB-DBSCAN clustering algorithm to detect potential objects from the lidar/radar fused

data and finding their centroids.
9. Employing the RANSAC algorithm to extract the pole parameters by fitting circles (which represent

poles shape) to the clusters identified by the GB-DBSCAN.
10. Employing the ICP algorithm for the data association between the detected poles in sensors data and the

registered poles in the reference map.

Farag et al. 2018c; Farag et al. 2018b; Farag, W. 2019c; Farag et al. 2019c; Farag, W. 2021b).

Future ADAS and autonomous vehicles require accurate and reliable self-localization systems (Farag et al.
2019b; Farag, W. 2019c; Farag, W. 2021a). Accuracy is required because an exact pose estimate plays a major
role in enabling state-of-the-art ADAS functionalities such as the automated-lane following (Farag, W. 2020a;
Farag, W. 2020b; Farag, W. 2020f), or collision avoidance (Farag, W. 2020d). Reliability is required because the
quality of the pose estimate must be preserved even in changing environmental factors to maintain the highest
safety levels (Farag, W. 2019b; Farag, W. 2020c).

Localization based on satellite systems are available for decades and undergone several improvements. Recent
systems like RTK-GPS or DGPS present an efficient solution since they achieve centimeter-level accuracy without
being augmented by any additional algorithms. However, there are several doubts about their reliability. In urban
areas, buildings, or other tall road objects that obstruct the line of sight between the vehicle and the satellites can
decrease accuracy to several meters (Modsching et al. 2006; Carlevaris-Bianco et al. 2015). Therefore, employing
reference dense maps like polygon meshes, grid maps, or point clouds represents an alternative localization
solution with higher reliability (Levinson et al. 2010). However, map-based approaches have a major downside of
requiring a huge size of memory that immediately becomes unaffordable if larger-scale maps to be used. To
overcome this problem, what is called “landmark maps” attracted a lot of interest (Woo et al. 2019). In these
maps, massive amounts of raw sensory data points (lidar, radar, and/or camera) are condensed into a relatively
much small number of distinct and marked features. This way the required memory usage can be decreased by
several orders of magnitude (Kummerle et al. 2019).

In (Kuutti et al. 2018) it was demonstrated that, in terms of performance, LiDAR techniques hold the most
promise for the localization of autonomous applications; however, the high power and processing requirements,
as well as the high cost, make them unfeasible in terms of cost-efficiency and commercialization. As a result, more
LiDAR technology optimization, or alternative approaches such as ground penetrating radar localization or vision-
based localization within LiDAR maps could pave the way to commercially viable systems. However, before mass
deployment, additional research work to validate the robustness of these systems, as well as validating their
performance under a variety of driving conditions and refining operation parameters, will be needed.

In this work, a vehicle localization approach, referred to as RT_MCL, for urban environments is proposed. The
RT_MCL relies on pole-like landmarks extracted from lidar/radar fused data. Pole-like landmarks typically take
several forms such as traffic signs, telegraph poles, tree trunks, streetlamps, and bollards. Several features make
them very convenient and reliable in-vehicle localization: a) they are abundant and widespread in urban areas, b)
they rarely get dislocated and stay in their locations for long-time, c) they have well-defined rounded geometrical
shapes that do not get affected with season or weather.

The RT_MCL matches the detected poles by the ego-car sensors with that being registered in a global reference
map. This high-resolution map is being developed precisely off-line using lidar/radar data covering the same which
the ego-car will drive on. The environment in the reference map is modeled, instead of as spatial poles of fixed
positions, as probabilistic poles whereby every pole is represented by its Gaussian distribution over its position-
prospect values. Consequently, Bayesian inference (employed by a particle filter) can favorably weight parts of
the map most likely to be relevant to the ego-car pose, thereby reducing uncertainty and catastrophic errors.
Moreover, to increase the precision of poles detection the RT_MCL uses the Unscented Kalman Filter (UKF) for
sensors data fusion to combine the merits of both lidar and radar and reduces scattering.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters112

2. THE RT_MCL METHOD OVERVIEW

The flowchart of the proposed RT_MCL autonomous car localization method is shown in Figure 1. The input
to the proposed algorithm can be sorted into four items:

a) The reading of a Global Navigation Satellite Systems (GNSS) such as GPS integrated with that of an

Inertial Motion Units (IMU) to provide the initial estimate of the ego-car pose. The GPS provides a low
accuracy initial position and the IMU provides the incremental change in this position as well as the
heading angle estimate. The main principle of GPS-IMU fusion is correcting accumulated errors of dead
reckoning in intervals with absolute position readings (Suhr et al. 2017). The fused output is used in the
initialization step of the particle filter.

b) The odometry readings in terms of the ego-car velocity and yaw rate are filtered from high-frequency
noise and used as a control input to the particle filter.

c) The lidar/radar measurement data are fused using the proposed UKF to detect objects in the ego-car
surroundings. The fused data are then clustered using the GB-DBSCAN algorithm (Dietmayer et al.
2012) to identify potential objects. The algorithm is tuned in a way to identify more likely pole-like
static objects. The Doppler velocity of radar detections is used to discard detections originating from
moving objects.

d) An off-line high definition 3-D point cloud reference map with identified pole-like landmarks
coordinates is used as an input to the RT_MCL localizer. The identified pole-like objects by the GB-
DBSCAN algorithm are then aligned with the identified pole-like landmarks in a process called “data
association”. In other words, the association of the coordinates of the poles resulted from the clustering
with that from the map using the Iterative Closest Point (ICP) algorithm (Lu et al. 1997). This association
is very crucial for localization accuracy.

The core of the RT_MCL localizer is the particle filter (Thrun, S. 2002), which will be explained later in detail.

The particle filter uses the four inputs to determine the pose of the ego-car with much higher accuracy than the one
received from the GPS/IMU fusion.

Figure 1. RT_MCL roadmap.

113Wael Farag

3. THE UNSCENTED KALMAN FILTER OVERVIEW

The Kalman Filter (KF) (Zarchan et al. 2013) is a system of equations working together to form a predictor-
update cyclic optimal estimator that minimizes the estimated error covariance. The KF estimates the state 𝑥𝑥 ∈ 𝑅𝑅!
given the measurement 𝑧𝑧 ∈ 𝑅𝑅" of a discrete-time controlled process that is modeled by a set of linear stochastic
difference equations.

However, as KF is only limited to linear processes, and accordingly, it is not suitable to the radar measurement

process which is inherently nonlinear. Therefore, the unscented Kalman filter is introduced (Wan et al. 2000) to
overcome this limitation. The UKF is a derivative-free alternative to EKF (Einicke 1999) that uses a deterministic
sampling approach. The UKF utilizes the predict-update two-step process as well, however, they are now augmented
with further steps like generation and prediction of sigma points as shown in Figure 1.

In the UKF process, the state Gaussian distribution is represented using a minimal set of carefully chosen sample

points, called sigma points. 𝑛𝑛# = 2𝑛𝑛 + 1 sigma points are selected based on the following rule:

𝑋𝑋$ = +𝑥𝑥$		𝑥𝑥$ + -(𝜆𝜆 + 𝑛𝑛#)𝑃𝑃$			𝑥𝑥$ − -(𝜆𝜆 + 𝑛𝑛#)𝑃𝑃$3 (1)

where 𝑋𝑋$ is the sigma-point matrix which includes 𝑛𝑛# sigma-point vectors, 𝜆𝜆 is a design parameter that

determines the spread of the generated sigma points and usually takes the form 𝜆𝜆 = 3 − 𝑛𝑛#.

In the sigma-point prediction step, each generated sigma point is inserted in the UKF nonlinear process model

given in Eq. (2) to produce the matrix of the predicted (estimated) sigma points, which has an 𝑛𝑛 × 𝑛𝑛#	dimension.

𝑋𝑋6$%& = 𝑓𝑓(𝑋𝑋$, 𝜈𝜈$) (2)

In the next step, the predicted state-mean and covariance matrices are calculated from the predicted sigma points
as given in Eq. (3):

𝑥𝑥:$%& =;𝑤𝑤'𝑋𝑋6$%&,'

!!

')*

 (3)

𝑃𝑃6$%& =;𝑤𝑤'=𝑋𝑋6$%&,' − 𝑥𝑥:$%&>
+!!

')*

=𝑋𝑋6$%&,' − 𝑥𝑥:$%&>
,

where 𝑤𝑤'′𝑠𝑠 are the sigma-point weights that are used here to invert the spreading of the sigma points. These

weights are calculated as shown in Eq. (4):

𝑤𝑤' =
𝜆𝜆

𝜆𝜆 + 𝑛𝑛#
, 𝑖𝑖 = 0

 (4)

𝑤𝑤' =
1

2(𝜆𝜆 + 𝑛𝑛#)
, 𝑖𝑖 = 1…𝑛𝑛#

2. THE RT_MCL METHOD OVERVIEW

The flowchart of the proposed RT_MCL autonomous car localization method is shown in Figure 1. The input
to the proposed algorithm can be sorted into four items:

a) The reading of a Global Navigation Satellite Systems (GNSS) such as GPS integrated with that of an

Inertial Motion Units (IMU) to provide the initial estimate of the ego-car pose. The GPS provides a low
accuracy initial position and the IMU provides the incremental change in this position as well as the
heading angle estimate. The main principle of GPS-IMU fusion is correcting accumulated errors of dead
reckoning in intervals with absolute position readings (Suhr et al. 2017). The fused output is used in the
initialization step of the particle filter.

b) The odometry readings in terms of the ego-car velocity and yaw rate are filtered from high-frequency
noise and used as a control input to the particle filter.

c) The lidar/radar measurement data are fused using the proposed UKF to detect objects in the ego-car
surroundings. The fused data are then clustered using the GB-DBSCAN algorithm (Dietmayer et al.
2012) to identify potential objects. The algorithm is tuned in a way to identify more likely pole-like
static objects. The Doppler velocity of radar detections is used to discard detections originating from
moving objects.

d) An off-line high definition 3-D point cloud reference map with identified pole-like landmarks
coordinates is used as an input to the RT_MCL localizer. The identified pole-like objects by the GB-
DBSCAN algorithm are then aligned with the identified pole-like landmarks in a process called “data
association”. In other words, the association of the coordinates of the poles resulted from the clustering
with that from the map using the Iterative Closest Point (ICP) algorithm (Lu et al. 1997). This association
is very crucial for localization accuracy.

The core of the RT_MCL localizer is the particle filter (Thrun, S. 2002), which will be explained later in detail.

The particle filter uses the four inputs to determine the pose of the ego-car with much higher accuracy than the one
received from the GPS/IMU fusion.

Figure 1. RT_MCL roadmap.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters114

In the measurement prediction step, each generated sigma point is inserted in the UKF nonlinear measurement
model given in Eq. (5) to produce the matrix of the predicted measurement sigma points, which has an
𝑛𝑛 × 𝑛𝑛#	dimension.

𝑍𝑍E$%& = ℎ=𝑋𝑋6$%&> (5)

In the next step, the predicted measurement-mean-and-covariance matrices are calculated from the predicted

sigma points as well as the measurement noise covariance matrix R as given in Eq. (6):

𝑧̂𝑧$%& =;𝑤𝑤'𝑍𝑍E$%&,'

!!

')*

𝑆𝑆$%& = ∑ 𝑤𝑤'=𝑍𝑍E$%&,' − 𝑧̂𝑧$%&>

+!!
')* =𝑍𝑍E$%&,' − 𝑧̂𝑧$%&>

, + 𝑅𝑅 (6)

𝑅𝑅 = 𝐸𝐸{𝜔𝜔$. 𝜔𝜔$,}

where 𝑤𝑤'′𝑠𝑠 are the sigma-point weights that are determined using Eq. (4).

The final step is the UKF state update, where the UKF gain matrix (𝐾𝐾) is calculated as in Eq. (7) using the

calculated cross-correlation matrix (𝑇𝑇) between the sigma points in the state space and the measurement space. The
gain is used to update the UKF state vector (𝑥𝑥) as well as the state covariance matrix (𝑃𝑃).

𝑇𝑇$%& =;𝑤𝑤'=𝑋𝑋6$%&,' − 𝑥𝑥:$%&>
+!!

')*

=𝑍𝑍E$%&,' − 𝑧̂𝑧$%&>
,

𝐾𝐾$%& = 𝑇𝑇$%&𝑆𝑆$%&-&
 (7)
𝑥𝑥$%& = 𝑥𝑥:$%& + 𝐾𝐾$%&(𝑧̂𝑧$%& − 𝑧𝑧$%&)

𝑃𝑃$%& = 𝑃𝑃6$%& − 𝐾𝐾$%&𝑆𝑆$%&𝐾𝐾$%&,

Figure 2. UKF roadmap.

115Wael Farag

4. THE MOVING OBJECT MODEL

The state of the moving object (Schubert et al. 2008) is determined by the five variables grouped into the state
vector 𝑥𝑥 shown in Eq. (14), where 𝑝𝑝#, and 𝑝𝑝. are the object position in the x and y-axis respectively as shown in

Figure 3, 𝑣𝑣 is the magnitude of object velocity derived from its x and y components, 𝑣𝑣# and 𝑣𝑣. respectively. 	𝜓𝜓
is the yaw angle (object orientation) and 𝜓̇𝜓 is rate of change of the object-yaw angle.

𝑥𝑥 =

⎣
⎢
⎢
⎢
⎡
𝑝𝑝#
𝑝𝑝.
𝑣𝑣
𝜓𝜓
𝜓̇𝜓 ⎦
⎥
⎥
⎥
⎤
, 𝑣𝑣 = -𝑣𝑣#+ + 𝑣𝑣.+, 𝜓𝜓 = 𝑡𝑡𝑡𝑡𝑡𝑡-&

/"
/!

 (8)

The nonlinear 𝑥𝑥$%& = 𝑓𝑓(𝑥𝑥$, 𝜈𝜈$) difference equation that describes the motion model of the object is derived

based on the state vector 𝑥𝑥 and presented in Eq. (15) and (16).

𝑥𝑥$%& = 𝑥𝑥$ +

⎣
⎢
⎢
⎢
⎢
⎡

/#
0̇#
]𝑠𝑠𝑠𝑠𝑠𝑠=𝜓𝜓$ + 𝜓̇𝜓$Δ𝑡𝑡> − 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓$)_

/#
0̇#
]−𝑐𝑐𝑐𝑐𝑐𝑐=𝜓𝜓$ + 𝜓̇𝜓$𝛥𝛥𝛥𝛥> + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓$)_

0
Δ𝑡𝑡
0 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜈𝜈$ (9)

𝜈𝜈$ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
&
+
(Δ𝑡𝑡)+𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓$). 𝜈𝜈2,$

&
+
(Δ𝑡𝑡)+𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓$). 𝜈𝜈2,$

Δ𝑡𝑡. 𝜈𝜈2,$
&
+
(Δ𝑡𝑡)+. 𝜈𝜈0,$̈
Δ𝑡𝑡. 𝜈𝜈0,$̈ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (10)

Δ𝑡𝑡 = 𝑡𝑡$%& − 𝑡𝑡$

𝜈𝜈2,$~𝒩𝒩(0, 𝜎𝜎2+) (11)

𝜈𝜈0̈,$~𝒩𝒩(0, 𝜎𝜎0̈

+)

where Δ𝑡𝑡 is the time difference between two consecutive samples, 𝜓̈𝜓 is the yaw acceleration, 𝑎𝑎 is the
longitudinal acceleration, 𝜈𝜈2,$ is the longitudinal acceleration noise at sample 𝑘𝑘 with a standard deviation 𝜎𝜎2+, 𝜈𝜈0̈,$
is the yaw acceleration noise at sample 𝑘𝑘 with a standard deviation 𝜎𝜎0̈

+ .

If the 𝜓̇𝜓 is zero, and to avoid dividing by zero in Eq. (9), the following approximation is used to calculate the

prediction of 𝑝𝑝#, and 𝑝𝑝.:

𝑝𝑝##$% = 𝑝𝑝## + 𝑣𝑣$𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓$)Δ𝑡𝑡

 (12)
𝑝𝑝.#$% = 𝑝𝑝.# + 𝑣𝑣$𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓$)Δ𝑡𝑡

In the measurement prediction step, each generated sigma point is inserted in the UKF nonlinear measurement
model given in Eq. (5) to produce the matrix of the predicted measurement sigma points, which has an
𝑛𝑛 × 𝑛𝑛#	dimension.

𝑍𝑍E$%& = ℎ=𝑋𝑋6$%&> (5)

In the next step, the predicted measurement-mean-and-covariance matrices are calculated from the predicted

sigma points as well as the measurement noise covariance matrix R as given in Eq. (6):

𝑧̂𝑧$%& =;𝑤𝑤'𝑍𝑍E$%&,'

!!

')*

𝑆𝑆$%& = ∑ 𝑤𝑤'=𝑍𝑍E$%&,' − 𝑧̂𝑧$%&>

+!!
')* =𝑍𝑍E$%&,' − 𝑧̂𝑧$%&>

, + 𝑅𝑅 (6)

𝑅𝑅 = 𝐸𝐸{𝜔𝜔$. 𝜔𝜔$,}

where 𝑤𝑤'′𝑠𝑠 are the sigma-point weights that are determined using Eq. (4).

The final step is the UKF state update, where the UKF gain matrix (𝐾𝐾) is calculated as in Eq. (7) using the

calculated cross-correlation matrix (𝑇𝑇) between the sigma points in the state space and the measurement space. The
gain is used to update the UKF state vector (𝑥𝑥) as well as the state covariance matrix (𝑃𝑃).

𝑇𝑇$%& =;𝑤𝑤'=𝑋𝑋6$%&,' − 𝑥𝑥:$%&>
+!!

')*

=𝑍𝑍E$%&,' − 𝑧̂𝑧$%&>
,

𝐾𝐾$%& = 𝑇𝑇$%&𝑆𝑆$%&-&
 (7)
𝑥𝑥$%& = 𝑥𝑥:$%& + 𝐾𝐾$%&(𝑧̂𝑧$%& − 𝑧𝑧$%&)

𝑃𝑃$%& = 𝑃𝑃6$%& − 𝐾𝐾$%&𝑆𝑆$%&𝐾𝐾$%&,

Figure 2. UKF roadmap.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters116

Figure 3. An object motion model.

5. SENSOR FUSION USING UKF

The processed lidar measurement vector includes the moving object centroid position (𝑝𝑝# and 𝑝𝑝.) in cartesian
coordinates (Eq. (13)), while the radar measurement vector includes the moving object centroid position (𝜌𝜌, 𝜑𝜑) and
radian velocity (𝜌̇𝜌) in polar coordinates as represented by Eq. (14). The mapping function that specifies how lidar
Cartesian coordinates got mapped to the radar polar coordinates is given as well in Eq. (15).

𝑧𝑧4'526 =]
𝑝𝑝#
𝑝𝑝._ , 𝑧𝑧62526 = j

𝜌𝜌
𝜑𝜑
𝜌̇𝜌
k (13)

ℎ(𝑥𝑥) = j
𝜌𝜌
𝜑𝜑
𝜌̇𝜌
k =

⎝

⎜⎜
⎛
-𝑝𝑝#+ + 𝑝𝑝.+

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]7"
7!
_

7!/!%7"/"

87!&%7"& ⎠

⎟⎟
⎞

 (14)

𝑝𝑝# = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝜑𝜑), 𝑝𝑝. = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝜑𝜑) (15)

According to Figure 3, each sensor has its own prediction update scheme, however, both sensors share the same

state prediction scheme. The belief about the object’s position and velocity is updated asynchronously each time the
measurement is received regardless of the source sensor.

117Wael Farag

Figure 4. Lidar and radar data fusion using UKF.

In Figure 4, after computing the elapsed time between consecutive sensor reading (∆𝑡𝑡), the sigma points (𝑋𝑋$)
are generated using Eq. (1), and then a next-time-step prediction for sigma points (𝑋𝑋6$%&) is carried out using Eq.
(2) while employing the moving object nonlinear motion model given in Eq. (9). The resulted predicted sigma
points are then used to compute the state mean (𝑥𝑥:$%&) and covariance (𝑃𝑃6$%&) matrices using Eq. (3).

Then the fusion technique thus branches into two directions based on the source of the last sensor data

measurement. If the source is a radar and employing the nonlinear radar measurement model (Eq. (14)), the
predicted measurement sigma points (𝑍𝑍E$%&) are calculated from the predicted state sigma points (𝑋𝑋6$%&) using Eq.
(5). Then, the predicted measurements (𝑧̂𝑧$%&) and their covariance matrix (𝑆𝑆$%&) are calculated based on Eq. (6)
using the measurement noise covariance matrix 𝑅𝑅62526 given in Eq. (15). Then, 𝑥𝑥:$%& and 𝑧̂𝑧$%& and are used to
compute the cross-correlation matrix (𝑇𝑇$%&) between the sigma points in the state space (𝑋𝑋6$%&) and the
measurement space (𝑍𝑍E$%&) as in Eq. (7). Based on this cross-correlation matrix, the Kalman filter gain (𝐾𝐾$%&) is
then calculated and used to compute the updated object’s state vector (𝑥𝑥$%&) and covariance matrix (𝑃𝑃$%&) as
shown by Eq. (7).

𝑅𝑅62526 = t
𝜎𝜎9+ 0 0
0 𝜎𝜎:+ 0
0 0 𝜎𝜎9̇+

u (16)

Figure 3. An object motion model.

5. SENSOR FUSION USING UKF

The processed lidar measurement vector includes the moving object centroid position (𝑝𝑝# and 𝑝𝑝.) in cartesian
coordinates (Eq. (13)), while the radar measurement vector includes the moving object centroid position (𝜌𝜌, 𝜑𝜑) and
radian velocity (𝜌̇𝜌) in polar coordinates as represented by Eq. (14). The mapping function that specifies how lidar
Cartesian coordinates got mapped to the radar polar coordinates is given as well in Eq. (15).

𝑧𝑧4'526 =]
𝑝𝑝#
𝑝𝑝._ , 𝑧𝑧62526 = j

𝜌𝜌
𝜑𝜑
𝜌̇𝜌
k (13)

ℎ(𝑥𝑥) = j
𝜌𝜌
𝜑𝜑
𝜌̇𝜌
k =

⎝

⎜⎜
⎛
-𝑝𝑝#+ + 𝑝𝑝.+

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]7"
7!
_

7!/!%7"/"

87!&%7"& ⎠

⎟⎟
⎞

 (14)

𝑝𝑝# = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝜑𝜑), 𝑝𝑝. = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝜑𝜑) (15)

According to Figure 3, each sensor has its own prediction update scheme, however, both sensors share the same

state prediction scheme. The belief about the object’s position and velocity is updated asynchronously each time the
measurement is received regardless of the source sensor.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters118

where 𝜎𝜎9 is the noise standard deviation of the object radial distance, 𝜎𝜎: is the noise standard deviation of the
object heading (bearing), 𝜎𝜎9̇ is the noise standard deviation of the object yaw rate.

 If the measurement data source is a lidar sensor and employing the linear lidar measurement model (𝐻𝐻4'526)

shown in Eq. (16), the predicted measurement sigma points (𝑍𝑍E$%&) is directly calculated from (𝑋𝑋6$%&). Then, the
predicted measurements (𝑧̂𝑧$%&) and their covariance matrix (𝑆𝑆$%&) are calculated based on Eq. (6) using the
measurement noise covariance matrix 𝑅𝑅4'526 given in Eq. (17). Then, 𝑥𝑥:$%& and 𝑧̂𝑧$%& are used to compute the cross-
correlation matrix (𝑇𝑇$%&) between the sigma points in the state space (𝑋𝑋6$%&) and the measurement space (𝑍𝑍E$%&) as
in Eq. (7). Based on this cross-correlation matrix, the Kalman filter gain (𝐾𝐾$%&) is then calculated and used to
compute the updated object’s state vector (𝑥𝑥$%&) and covariance matrix (𝑃𝑃$%&) as shown by Eq. (7).

𝐻𝐻4'526 = w
1 0 0 0 0
0 1 0 0 0x

 (17)

𝑅𝑅4'526 = 𝐸𝐸[𝜔𝜔.𝜔𝜔,] = {
𝜎𝜎7!
+ 0
0 𝜎𝜎7"

+ |

where 𝜎𝜎7! and 𝜎𝜎7" are the noise standard deviations for the object 𝑥𝑥 and 𝑦𝑦 positions respectively.

6. CLUSTERING AND DATA ASSOCIATION

Figure 3 presents the lidar and radar data fusion technique employing the UKF. The UKF produces point clouds
that provide information about objects in the ego-car surrounding. Clustering is a key tool to extract these objects'
information (geometry and poses) from UKF point clouds. The objective of the clustering is to represent each object
in the form of a source-point model to reduce computational cost and memory requirements.

UKF data processing is performed using clustering and association algorithms. DBSCAN (Sander et. al. 1996)

is an unsupervised clustering algorithm that groups together data points if the density of the points is high enough. It
requires two parameters to determine the density. The first parameter is ε describing the radial distance from a point
p, that is being evaluated. The second parameter is minPts, which is the least number of detections that must be within
a distance ε from p, including p itself, to form a cluster. By choosing ε and minPts, it is then possible to decide the
necessary density for a group of points to form a cluster, however, these fixed parameters are not convenient if various
types and topologies of road objects need to be detected. As an improvement to this algorithm, GB-DBSCAN is
introduced (Dietmayer et al. 2012). It works in the same manner as DBSCAN but does not have fixed parameters.
Instead, a polar grid is created according to the radial and angular resolution of the sensor. Instead of looking at a
circular search area with a fixed radius, GB-DBSCAN can use a more dynamic, elliptic, search area. The most
distinctive feature of a pole-like object is that the density of point cloud at its position is far greater than its
surrounding.

While GB-DBSCAN is used for coarse clustering, the RANSAC (Fischler et al. 1981) is used to fine-tune the

clustering and associate geometrical shape proposals to potential coarse clusters. Therefore, RANSAC here is used
to fit a circle (which represents poles shape) to all points (𝑁𝑁) in each cluster. After successful fitting, RANSAC can
extract the pole parameters (center (𝑥𝑥:;, 𝑦𝑦:;) and radius (𝑟̂𝑟)) from the fitted circles by solving the following equation:

 min	 Ç&
<
∑ +-(𝑥𝑥' − 𝑥𝑥:;)+ + (𝑦𝑦' − 𝑦𝑦:;)+ − 𝑟̂𝑟3

+<
')& É (18)

119Wael Farag

Establishing a matching link between the detected pole-like objects in the lidar/radar data (the source) and the
pole-like landmarks in the reference map (the target) is referred to as the data association step. This step is necessary
for the proper execution of the particle filter. The data association step is carried out using the Iterative Closest Point
(ICP) algorithm. Instead of working on the whole point-clouds in both the source and target as per the standard
application of this algorithm (Lu et al. 1997), only the centroids of pole-like objects are considered for the matching
process. This way a huge memory and processing time will be saved.

The ICP algorithm works by iterating a two-step procedure until convergence. The first step is matching each

point in a set of source points, X (lidar/radar data), to the closest point in a set of target points, Y (reference map),
and the second step is finding the optimal transform between the source and target sets, given the assignments.
Matching points by distance is a computationally efficient operation if a k-d tree data structure is used to store Y.
Here, the points in X is denoted as 𝑥𝑥'	and the matched (closest) point from 𝑥𝑥' in Y is denoted as 𝑦𝑦'. The basic 2D ICP
version minimizes the sum of squared distances between source and target points to find the rotation angle 𝜑𝜑, encoded
by a rotation matrix 𝑅𝑅(𝜑𝜑), and the translation t.

𝑚𝑚𝑚𝑚𝑚𝑚:,= Ç∑ =𝑦𝑦' − (𝑅𝑅(𝜑𝜑)𝑥𝑥' − 𝑡𝑡)>

,<
')& =𝑦𝑦' − (𝑅𝑅(𝜑𝜑)𝑥𝑥' − 𝑡𝑡)>É	 (19)

To perform the data association, both observations and landmarks in the reference map should have the same

coordinate system. Observations in the ego-car coordinate system (𝑥𝑥; and 𝑦𝑦;) can be transformed into map
coordinates 𝑥𝑥" and 𝑦𝑦" by ratifying them through a homogenous transformation matrix shown in Eq. (20) that
performs rotation and translation using map particle/ego-car coordinates (𝑥𝑥7 and 𝑦𝑦7), and the rotation angle 𝜃𝜃.

{
𝑥𝑥"
𝑦𝑦"
1
| = Ü

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥7
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦7
0 0 1

á × {
𝑥𝑥;
𝑦𝑦;
1
| (20)

7. PARTICLE FILTER OVERVIEW

Particle filtering uses a finite set of particles to represent the posterior distribution 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥=) of some stochastic
process given noisy and/or partial observations 𝑝𝑝(𝑧𝑧=|𝑥𝑥=). It is an approximate realization of the recursive Bayesian
filter stated in Eq. (21) where 𝜁𝜁 is a normalization factor.

𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥=) ← 𝜁𝜁	𝑝𝑝(𝑧𝑧=|𝑥𝑥=)	𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥=-&) (21)

Typically, the number of particles, 𝑀𝑀 should be large enough to represent the belief 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥=) accurately to some

extent. The set of particles are denoted at time step t as

𝜒𝜒= = Ç𝑥𝑥=

[']|1 ≤ 𝑖𝑖 ≤ 𝑀𝑀É (22)

Each particle 𝑥𝑥=

['] is a hypothesis about the actual state at time t. Table 1 describes a simple implementation
of the particle filter and

Figure 5 depicts the whole flowchart. The recursive procedure is performed whenever a measurement update
(𝑧𝑧=) along with a new set of odometry data (𝑢𝑢=) becomes available.

where 𝜎𝜎9 is the noise standard deviation of the object radial distance, 𝜎𝜎: is the noise standard deviation of the
object heading (bearing), 𝜎𝜎9̇ is the noise standard deviation of the object yaw rate.

 If the measurement data source is a lidar sensor and employing the linear lidar measurement model (𝐻𝐻4'526)

shown in Eq. (16), the predicted measurement sigma points (𝑍𝑍E$%&) is directly calculated from (𝑋𝑋6$%&). Then, the
predicted measurements (𝑧̂𝑧$%&) and their covariance matrix (𝑆𝑆$%&) are calculated based on Eq. (6) using the
measurement noise covariance matrix 𝑅𝑅4'526 given in Eq. (17). Then, 𝑥𝑥:$%& and 𝑧̂𝑧$%& are used to compute the cross-
correlation matrix (𝑇𝑇$%&) between the sigma points in the state space (𝑋𝑋6$%&) and the measurement space (𝑍𝑍E$%&) as
in Eq. (7). Based on this cross-correlation matrix, the Kalman filter gain (𝐾𝐾$%&) is then calculated and used to
compute the updated object’s state vector (𝑥𝑥$%&) and covariance matrix (𝑃𝑃$%&) as shown by Eq. (7).

𝐻𝐻4'526 = w
1 0 0 0 0
0 1 0 0 0x

 (17)

𝑅𝑅4'526 = 𝐸𝐸[𝜔𝜔.𝜔𝜔,] = {
𝜎𝜎7!
+ 0
0 𝜎𝜎7"

+ |

where 𝜎𝜎7! and 𝜎𝜎7" are the noise standard deviations for the object 𝑥𝑥 and 𝑦𝑦 positions respectively.

6. CLUSTERING AND DATA ASSOCIATION

Figure 3 presents the lidar and radar data fusion technique employing the UKF. The UKF produces point clouds
that provide information about objects in the ego-car surrounding. Clustering is a key tool to extract these objects'
information (geometry and poses) from UKF point clouds. The objective of the clustering is to represent each object
in the form of a source-point model to reduce computational cost and memory requirements.

UKF data processing is performed using clustering and association algorithms. DBSCAN (Sander et. al. 1996)

is an unsupervised clustering algorithm that groups together data points if the density of the points is high enough. It
requires two parameters to determine the density. The first parameter is ε describing the radial distance from a point
p, that is being evaluated. The second parameter is minPts, which is the least number of detections that must be within
a distance ε from p, including p itself, to form a cluster. By choosing ε and minPts, it is then possible to decide the
necessary density for a group of points to form a cluster, however, these fixed parameters are not convenient if various
types and topologies of road objects need to be detected. As an improvement to this algorithm, GB-DBSCAN is
introduced (Dietmayer et al. 2012). It works in the same manner as DBSCAN but does not have fixed parameters.
Instead, a polar grid is created according to the radial and angular resolution of the sensor. Instead of looking at a
circular search area with a fixed radius, GB-DBSCAN can use a more dynamic, elliptic, search area. The most
distinctive feature of a pole-like object is that the density of point cloud at its position is far greater than its
surrounding.

While GB-DBSCAN is used for coarse clustering, the RANSAC (Fischler et al. 1981) is used to fine-tune the

clustering and associate geometrical shape proposals to potential coarse clusters. Therefore, RANSAC here is used
to fit a circle (which represents poles shape) to all points (𝑁𝑁) in each cluster. After successful fitting, RANSAC can
extract the pole parameters (center (𝑥𝑥:;, 𝑦𝑦:;) and radius (𝑟̂𝑟)) from the fitted circles by solving the following equation:

 min	 Ç&
<
∑ +-(𝑥𝑥' − 𝑥𝑥:;)+ + (𝑦𝑦' − 𝑦𝑦:;)+ − 𝑟̂𝑟3

+<
')& É (18)

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters120

Table 1. Particle Filter Pseudo Code.

Procedure Particle Filter (𝜒𝜒=-&, 𝑢𝑢=, 𝑧𝑧=):

Input: Set of particles 𝜒𝜒=-& at time (𝑡𝑡 − 1), control
inputs 𝑢𝑢=, and a set of measurements 𝑧𝑧=.

Output: The updated set of particles 𝜒𝜒= at time 𝑡𝑡.

Begin
1. Initialize Particles: 𝜒̅𝜒= = 𝜒𝜒= = ∅.
2. 𝐹𝐹𝐹𝐹𝐹𝐹	𝑚𝑚 = 1	𝑡𝑡𝑡𝑡	𝑀𝑀	𝑑𝑑𝑑𝑑

i. 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔	𝑥𝑥'
["]~𝑝𝑝]𝑥𝑥=|𝑢𝑢=, 𝑥𝑥=-&

["]_

ii. 𝑤𝑤=
["] = 𝑝𝑝]𝑧𝑧=|𝑥𝑥'

["]_

iii. 𝜒̅𝜒= = 𝜒̅𝜒= + 〈𝑥𝑥'
["], 𝑤𝑤=

["]〉
iv. End for loop

3. 𝐹𝐹𝐹𝐹𝐹𝐹	𝑚𝑚 = 1	𝑡𝑡𝑡𝑡	𝑀𝑀	𝑑𝑑𝑑𝑑
i. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑖𝑖	𝑤𝑤𝑤𝑤𝑤𝑤ℎ	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝛼𝛼𝑤𝑤=

[']
ii. 𝑎𝑎𝑎𝑎𝑎𝑎	𝑥𝑥=

[']	𝑡𝑡𝑡𝑡	𝜒𝜒=
iii. End for loop

4. Return 𝜒𝜒=
End.

Figure 5. Particle Filter Algorithm Flowchart.

The prediction step is implemented by the loop at line 2. One state hypothesis (𝑥𝑥'
["]) is generated for each

particle based on its current state and the state transition distribution 𝑝𝑝]𝑥𝑥=|𝑢𝑢=, 𝑥𝑥=-&
["]_ which is computed using the

particle (car) motion model described in Section 0. An importance factor (weight) 𝑤𝑤=
['] is calculated or updated for

each newly generated hypothesis using a multivariate Gaussian probability density function for each observation

121Wael Farag

and combine the likelihood of all the observations by taking their products as given in Eq. (23):

𝑤𝑤=
["] = ∏

@#7A-%&BC'
[)]-D'

[)]E
+
F,%BC'

[)]-D'
[)]EG

H|+JF|
<
')& (23)

where 𝑧𝑧'

[=] is the 𝑖𝑖=K landmark observation for particle 𝑚𝑚 at step 𝑡𝑡, 𝜇𝜇'
[=] is the predicted (mean) measurement

for the landmark corresponding to the 𝑖𝑖=K observation at step 𝑡𝑡, Σ is the covariance matrix of the measurements,
and 𝑁𝑁 is the total number of measurements for one particle.

Afterward, in lines 3, new 𝑀𝑀 particles are resampled from the previous set of particles (𝜒̅𝜒=) proportionally to

their importance factors (𝛼𝛼𝑤𝑤=
[']) that have been determined in line 2.ii, where 𝛼𝛼 is a normalization factor. This

resampling yield 𝜒𝜒=, the updated posterior approximation. Note that 𝜒𝜒= generally will contain duplicates, taking
the places of particles that were not drawn in line 3.i as they have evolved into less likely hypotheses.

To check the convergence of the particle filter, the weighted-average error (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸L@'MK=@5) of all the particles

is used as a convergence indicator. The 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸L@'MK=@5 is computed as given in Eq. (24), by simply calculating the
root squared error between each particle state 𝑝𝑝' and the ground truth 𝑔𝑔 and multiply it by the particle’s weight,
and then sum the product for all particles and divide the summation by the aggregated particle weights.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸L@'MK=@5 =
∑ L'H|7'-M|
-
'.%
∑ L'-
'.%

 (24)

8. IMPLEMENTATION OF THE RT_MCL

Both UKF and PF are implemented using the high-performance language GCC C++ (GCC C++ 2020) on
Ubuntu Linux operating system (Ubuntu Linux 2020). This combination is fitted for the required real-time
performance (Nagiub et al. 2013). A C++ numerical solver, matrix, and vector operations package “Eigen” (Eigen
2020) is used to numerically calculate the object model and effectively performing the predict and update steps.

The object motion model described by Eq. (9-11) includes several noise parameters that need to be carefully set.

Table 2 presents the fine-tuned parameters for both UKF and PF.

Table 2. The UKF and object model noise parameters.

Parameter UKF/PF Parameter UKF

𝜎𝜎2 m/sec2 1.0 𝜎𝜎7" (lidar) m 0.15

𝜎𝜎0̈ rad/sec2 0.6 𝜎𝜎O (radar) m 0.3

𝜎𝜎0̇ rad/sec 0.06 𝜎𝜎: (radar) rad 0.03

𝜎𝜎7! (lidar) m 0.15 𝜎𝜎9̇ (radar) m/sec 0.3

The UKF design is considered consistent if the estimation error is unbiased, i.e. has zero-mean, and that the

actual mean square error of the filter matches the filter-calculated state covariance. As a measure of filter
consistency, the time-average Normalized Innovation Squared (NIS) (Piché, R. 2016) can be used to finetune the

Table 1. Particle Filter Pseudo Code.

Procedure Particle Filter (𝜒𝜒=-&, 𝑢𝑢=, 𝑧𝑧=):

Input: Set of particles 𝜒𝜒=-& at time (𝑡𝑡 − 1), control
inputs 𝑢𝑢=, and a set of measurements 𝑧𝑧=.

Output: The updated set of particles 𝜒𝜒= at time 𝑡𝑡.

Begin
1. Initialize Particles: 𝜒̅𝜒= = 𝜒𝜒= = ∅.
2. 𝐹𝐹𝐹𝐹𝐹𝐹	𝑚𝑚 = 1	𝑡𝑡𝑡𝑡	𝑀𝑀	𝑑𝑑𝑑𝑑

i. 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔	𝑥𝑥'
["]~𝑝𝑝]𝑥𝑥=|𝑢𝑢=, 𝑥𝑥=-&

["]_

ii. 𝑤𝑤=
["] = 𝑝𝑝]𝑧𝑧=|𝑥𝑥'

["]_

iii. 𝜒̅𝜒= = 𝜒̅𝜒= + 〈𝑥𝑥'
["], 𝑤𝑤=

["]〉
iv. End for loop

3. 𝐹𝐹𝐹𝐹𝐹𝐹	𝑚𝑚 = 1	𝑡𝑡𝑡𝑡	𝑀𝑀	𝑑𝑑𝑑𝑑
i. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑖𝑖	𝑤𝑤𝑤𝑤𝑤𝑤ℎ	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝	𝛼𝛼𝑤𝑤=

[']
ii. 𝑎𝑎𝑎𝑎𝑎𝑎	𝑥𝑥=

[']	𝑡𝑡𝑡𝑡	𝜒𝜒=
iii. End for loop

4. Return 𝜒𝜒=
End.

Figure 5. Particle Filter Algorithm Flowchart.

The prediction step is implemented by the loop at line 2. One state hypothesis (𝑥𝑥'
["]) is generated for each

particle based on its current state and the state transition distribution 𝑝𝑝]𝑥𝑥=|𝑢𝑢=, 𝑥𝑥=-&
["]_ which is computed using the

particle (car) motion model described in Section 0. An importance factor (weight) 𝑤𝑤=
['] is calculated or updated for

each newly generated hypothesis using a multivariate Gaussian probability density function for each observation

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters122

noise parameters. The metric, described by Eq. (25), is used to calculate the 𝑁𝑁𝑁𝑁𝑁𝑁 value at each sample 𝑘𝑘 and then
averaging these values (𝑁𝑁𝑁𝑁𝑁𝑁P/@62M@) over a moving window of measurements of length 𝑁𝑁.

𝑁𝑁𝑁𝑁𝑁𝑁$ = (𝑧𝑧$%& − 𝑧̂𝑧$),𝑆𝑆$-&(𝑧𝑧$%& − 𝑧̂𝑧$)
 (25)

𝑁𝑁𝑁𝑁𝑁𝑁P/@62M@ =
1
𝑁𝑁;𝑁𝑁𝑁𝑁𝑁𝑁$

$)<

$)&

The proper initialization of the UKF is very crucial to its subsequent performance (Zhao et al. 2017). The main

initialized variables are the state estimate vector (𝑥𝑥) and its estimate covariance matrix (𝑃𝑃). The first two terms of the
state vector 𝑥𝑥 given by Eq. (8) are 𝑝𝑝# and 𝑝𝑝. which are simply initialized using the first received raw sensor
measurement. For the other three terms of the state vector, intuition augmented with some trial-and-error is used to
initialize these variables as listed in Table 3. The state covariance matrix is initialized as a diagonal matrix that
contains the covariance of each variable estimate (Eq. (26).

𝑃𝑃 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]𝜎𝜎7Q!

+ , 𝜎𝜎7Q"
+ , 𝜎𝜎/Q+, 𝜎𝜎0R

+, 𝜎𝜎
0̇R
+_ (26)

Table 3. Initialization of UKF states.

Parameter UKF Parameter UKF

𝑝𝑝#			m 1st raw x-reading 𝑝𝑝.			m 1st raw y-reading

𝑣𝑣			m/sec 0.0 𝜓𝜓			rad 0.0

𝜓̇𝜓			rad/sec 0.0 𝜎𝜎7Q!			m 1.0

𝜎𝜎7Q"			m 1.0 𝜎𝜎/Q 			m/sec √1000

𝜎𝜎0R 			rad √1000 𝜎𝜎0̇R 			m/sec2 √1000

To check the performance of the UKF, in terms of how far the estimated results from the true results (ground

truth), the Root Mean Squared Error (RMSE) given in Eq. (27) is used. The metric is calculated over a moving
window of measurements of length 𝑁𝑁. 𝑥𝑥$@S= is the estimated state vector of the UKF, and 𝑥𝑥$=6T@is the true state
vector supplied by the simulator or given as training data during the UKF design phase.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =	ü&
<
∑ (𝑥𝑥$@S= − 𝑥𝑥$=6T@)+$)<
$)& (27)

The initialization of the PF is very crucial as well for its performance. Therefore, it is carried out as follows:

a) The number of particles is set to 𝑀𝑀 = 50. In the literature (Thrun, S. 2002; Levinson et al. 2007), this

number usually ranges from 100 to 1000, however, it is a compromise between accuracy and
computational speed. Several experimental trials are carried out and show that 50 produces the required
accuracy and real-time performance.

b) The PF state vector (particles poses) are initialized from the output of the GPS+IMU fusion
(𝑝𝑝#/01, 𝑝𝑝./01, 𝜃𝜃UVW) as follows:

123Wael Farag

𝑝𝑝#
["]~𝒩𝒩(𝑝𝑝#/01, 𝜎𝜎#/01

+ + 𝜎𝜎#23)'4'5'26
+)

𝑝𝑝.
["]~𝒩𝒩(𝑝𝑝./01, 𝜎𝜎./01

+ + 𝜎𝜎.23)'4'5'26
+) (28)

𝜃𝜃V26=';4@
["] ~𝒩𝒩(𝜃𝜃UVW, 𝜎𝜎X/01

+ + 𝜎𝜎X23)'4'5'26
+)

where 𝒑𝒑𝒙𝒙
[𝒎𝒎] , 𝒑𝒑𝒚𝒚

[𝒎𝒎] and 𝜽𝜽𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
[𝒎𝒎] represent particle 𝒎𝒎 initialized pose. 𝝈𝝈𝒙𝒙𝑮𝑮𝑮𝑮𝑮𝑮 , 𝝈𝝈𝒚𝒚𝑮𝑮𝑮𝑮𝑮𝑮 , and 𝝈𝝈𝜽𝜽𝑮𝑮𝑮𝑮𝑮𝑮 represent the

GPS+IMU reading noise standard deviations. 𝝈𝝈𝒙𝒙𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂, 𝝈𝝈𝒚𝒚𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂, and 𝝈𝝈𝜽𝜽𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 represent the artificial noise
added to each initial particle position for the purpose of randomization that helps in the conversion of the PF 0 ().
The values of these parameters are listed in Table 4.

c) The particle importance weights are all initialized with the uniform distribution 𝑤𝑤["] = &

e
.

d) As RT_MCL is using probabilistic maps, and each pole-like landmark is represented by Gaussian
distributions 𝓝𝓝(𝒑𝒑𝒙𝒙𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷, 𝝈𝝈𝒙𝒙𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

𝟐𝟐) and 𝓝𝓝(𝒑𝒑𝒚𝒚𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷, 𝝈𝝈𝒚𝒚𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
𝟐𝟐) to model the uncertainties in their positions. The

values of the standard deviations 𝝈𝝈𝒙𝒙𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 and 𝝈𝝈𝒚𝒚𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 are listed in Table 4.

Table 4. Initialization of the Particle Filter.

Parameter PF Parameter PF

𝜎𝜎#/01 0.3 m 𝜎𝜎#23)'4'5'26 10 m

𝜎𝜎./01 0.3 m 𝜎𝜎.23)'4'5'26 10 m

𝜎𝜎X/01 0.01 rad 𝜎𝜎X23)'4'5'26 0.05 rad

𝜎𝜎#DE6F 0.3 m 𝜎𝜎.DE6F 0.3 m

To check the performance of the PF, in terms of how far the estimated poses from the ground truth, the

cumulative mean absolute error for each pose variable given in Eq. (29) is used. The metric is calculated over a
moving window of measurements of length 𝑁𝑁. 𝑥𝑥'g@S=, 𝑦𝑦'g@S=, 𝜃𝜃'g@S= are the estimated pose variables of the PF, and
𝑥𝑥'
M=, 𝑦𝑦'

M=, 𝜃𝜃'
M=are the ground truth variables supplied by the simulator or given as training data during the PF design

phase.

𝑋𝑋@66h6 =
1
𝑁𝑁;¶𝑥𝑥'g@S= − 𝑥𝑥'

M=¶
<

')&

𝑌𝑌@66h6 =

&
<
∑ ¶𝑦𝑦'g@S= − 𝑦𝑦'

M=¶<
')& (29)

𝑌𝑌𝑌𝑌𝑌𝑌@66h6 =
1
𝑁𝑁;¶𝜃𝜃'g@S= − 𝜃𝜃'

M=¶
<

')&

noise parameters. The metric, described by Eq. (25), is used to calculate the 𝑁𝑁𝑁𝑁𝑁𝑁 value at each sample 𝑘𝑘 and then
averaging these values (𝑁𝑁𝑁𝑁𝑁𝑁P/@62M@) over a moving window of measurements of length 𝑁𝑁.

𝑁𝑁𝑁𝑁𝑁𝑁$ = (𝑧𝑧$%& − 𝑧̂𝑧$),𝑆𝑆$-&(𝑧𝑧$%& − 𝑧̂𝑧$)
 (25)

𝑁𝑁𝑁𝑁𝑁𝑁P/@62M@ =
1
𝑁𝑁;𝑁𝑁𝑁𝑁𝑁𝑁$

$)<

$)&

The proper initialization of the UKF is very crucial to its subsequent performance (Zhao et al. 2017). The main

initialized variables are the state estimate vector (𝑥𝑥) and its estimate covariance matrix (𝑃𝑃). The first two terms of the
state vector 𝑥𝑥 given by Eq. (8) are 𝑝𝑝# and 𝑝𝑝. which are simply initialized using the first received raw sensor
measurement. For the other three terms of the state vector, intuition augmented with some trial-and-error is used to
initialize these variables as listed in Table 3. The state covariance matrix is initialized as a diagonal matrix that
contains the covariance of each variable estimate (Eq. (26).

𝑃𝑃 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]𝜎𝜎7Q!

+ , 𝜎𝜎7Q"
+ , 𝜎𝜎/Q+, 𝜎𝜎0R

+, 𝜎𝜎
0̇R
+_ (26)

Table 3. Initialization of UKF states.

Parameter UKF Parameter UKF

𝑝𝑝#			m 1st raw x-reading 𝑝𝑝.			m 1st raw y-reading

𝑣𝑣			m/sec 0.0 𝜓𝜓			rad 0.0

𝜓̇𝜓			rad/sec 0.0 𝜎𝜎7Q!			m 1.0

𝜎𝜎7Q"			m 1.0 𝜎𝜎/Q 			m/sec √1000

𝜎𝜎0R 			rad √1000 𝜎𝜎0̇R 			m/sec2 √1000

To check the performance of the UKF, in terms of how far the estimated results from the true results (ground

truth), the Root Mean Squared Error (RMSE) given in Eq. (27) is used. The metric is calculated over a moving
window of measurements of length 𝑁𝑁. 𝑥𝑥$@S= is the estimated state vector of the UKF, and 𝑥𝑥$=6T@is the true state
vector supplied by the simulator or given as training data during the UKF design phase.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =	ü&
<
∑ (𝑥𝑥$@S= − 𝑥𝑥$=6T@)+$)<
$)& (27)

The initialization of the PF is very crucial as well for its performance. Therefore, it is carried out as follows:

a) The number of particles is set to 𝑀𝑀 = 50. In the literature (Thrun, S. 2002; Levinson et al. 2007), this

number usually ranges from 100 to 1000, however, it is a compromise between accuracy and
computational speed. Several experimental trials are carried out and show that 50 produces the required
accuracy and real-time performance.

b) The PF state vector (particles poses) are initialized from the output of the GPS+IMU fusion
(𝑝𝑝#/01, 𝑝𝑝./01, 𝜃𝜃UVW) as follows:

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters124

9. TESTING AND EVALUTION RESULTS

Extensive trials-and-errors attempts are used to tune the hyper-parameters of the RT_MCL. However, to be more
consistent and accurate, numerical Key Performance Indicators (KPIs) are constructed and coded as in Eq. (24), Eq.
(26) and Eq. (28) to evaluate the performance of the localization technique under the given set of hyper-parameters
(Farag, W. 1998).

Several test tracks have been used to evaluate the performance of the RT_MCL under different sets of hyper-

parameters in an iterative tuning process. An example of these test tracks is shown in Figure 6. This track is 754-
meter long with several curvatures and includes 42 pole-like landmarks to emulate urban driving.

Table 5 presents the testing results of the lidar/radar fusion algorithm that uses the UKF. The performance

evaluation is carried out on test tracks to detect road objects (cyclists, cars, pedestrians, and pole-like landmarks).
The RMSE KPI (Eq. (26)) is used to evaluate the UKF performance based on the five state variables: 𝑝𝑝#, 𝑝𝑝., 𝑣𝑣#, 𝑣𝑣.,
and 𝜓𝜓. The KPI is comparing each estimated state variable to its ground-truth value and finding the error. The lower
the value of the KPI the better the performance.

Table 5. Performance evaluation of the ukf.

State var Cyclist Car Pedestrian Pole

𝑝𝑝# 0.0648 0.1857 0.0652 0.0324

𝑝𝑝. 0.0809 0.1899 0.0605 0.0433

𝑣𝑣# 0.1452 0.4745 0.5332 0.0032

𝑣𝑣. 0.1592 0.5075 0.5442 0.0054

𝜓𝜓 0.0392 0.2580 0.2075 0.0075

To assess the significance of the fusion between lidar and radar in tracking. The UKF is tested in one time with

measurements from lidar alone, and another time with measurements from radar alone. The results reported in
Table 6 show how fusion makes the difference and substantially improves accuracy. The estimation of all state
variables is spectacularly improved. For example, the RMSE of x-position (𝑝𝑝#) estimation is reduced by 60%
compared to “lidar-alone” and 60% compared to “radar-alone” estimations. Moreover, the RMSE of x-velocity (𝑣𝑣#)
estimation is reduced by 30% compared to “lidar-alone” and 26% compared to “radar-alone” estimations. The NIS
values are calculated as well for “lidar-alone” and “radar-alone” cases to test the consistency of the UKF in their
cases. The reported values show that fusion significantly improves the consistency. The NIS values that exceed
the 95%-threshold have been reduced by 31% compared to the “lidar-alone” and 38.5% compared to the “radar-
alone” ones.

125Wael Farag

Table 6. Sensor Fusion Evaluation of the UKF (Bicycle Track).

 Lidar+Radar Lidar Only Radar Only

RMSE - 𝑝𝑝# 0.0648 0.1612 0.2031

RMSE - 𝑝𝑝. 0.0809 0.1464 0.2539

RMSE - 𝑣𝑣# 0.1452 0.2082 0.1971

RMSE - 𝑣𝑣. 0.1592 0.2129 0.1871

RMSE - 𝜓𝜓 0.0392 0.0540 0.0480

NIS - Average 2.2797 1.6941 2.6576

NIS - Min 0.0012 0.04874 0.11309

NIS - Max 14.749 12.997 12.183
NIS > 95%
Threshold 2.2% 3.2 % 5.2 %

Figure 6, Figure 7 and Figure 8 present an example of the testing and simulation results of the MCL algorithm

that uses the combination of the UKF and PF while employing a probabilistic reference map. The performance
evaluation is carried out on test tracks to detect road pole-like landmarks using the UKF and using these detections
by the GB-DBSCAN and the PF to localize the ego-car on the global map. In the mentioned figure, both the
estimated-pose values and the ground truth are drawn on top of each other due to the reported small errors as displayed
in Table 7. The RMSE KPI (Eq. (28)) is used to evaluate the PF performance based on the three pose variables:	𝑥𝑥, 𝑦𝑦,
and 𝜃𝜃. The KPI is comparing each estimated state variable to its ground-truth value and finding the error. The lower
the value of the KPI the better the performance. Several experiments have been carried out using the PF with different
numbers of particles to optimize its real-time performance. The results in Table 7 show that the number of particles
can go down to “25”, and the PF can still produce good results, fast execution time with robust convergence (while
“15” is divergent). However, to ensure more robustness, the number of particles of “50” is considered the most
appropriate selection with a delicate balance between the achieved accuracies, real-time performance, and
convergence. It is clear from the table that above 50 not many improvements in precision are achieved and a margin
of safety is required to enhance robustness, therefore 25 is not selected.

Table 7. The Particle Filter with Different Number of Particles.

#Particles x-error y-error Yaw-error Exec. Time

15 122.34 33.002 1.5959 0.268 ms

25 0.1382 0.1240 0.0048 0.486 ms

50 0.1143 0.1154 0.0040 0.739 ms

100 0.1154 0.1071 0.0037 1.224 ms

150 0.1098 0.1060 0.0037 2.086 ms

200 0.1102 0.1039 0.0036 2.403 ms

9. TESTING AND EVALUTION RESULTS

Extensive trials-and-errors attempts are used to tune the hyper-parameters of the RT_MCL. However, to be more
consistent and accurate, numerical Key Performance Indicators (KPIs) are constructed and coded as in Eq. (24), Eq.
(26) and Eq. (28) to evaluate the performance of the localization technique under the given set of hyper-parameters
(Farag, W. 1998).

Several test tracks have been used to evaluate the performance of the RT_MCL under different sets of hyper-

parameters in an iterative tuning process. An example of these test tracks is shown in Figure 6. This track is 754-
meter long with several curvatures and includes 42 pole-like landmarks to emulate urban driving.

Table 5 presents the testing results of the lidar/radar fusion algorithm that uses the UKF. The performance

evaluation is carried out on test tracks to detect road objects (cyclists, cars, pedestrians, and pole-like landmarks).
The RMSE KPI (Eq. (26)) is used to evaluate the UKF performance based on the five state variables: 𝑝𝑝#, 𝑝𝑝., 𝑣𝑣#, 𝑣𝑣.,
and 𝜓𝜓. The KPI is comparing each estimated state variable to its ground-truth value and finding the error. The lower
the value of the KPI the better the performance.

Table 5. Performance evaluation of the ukf.

State var Cyclist Car Pedestrian Pole

𝑝𝑝# 0.0648 0.1857 0.0652 0.0324

𝑝𝑝. 0.0809 0.1899 0.0605 0.0433

𝑣𝑣# 0.1452 0.4745 0.5332 0.0032

𝑣𝑣. 0.1592 0.5075 0.5442 0.0054

𝜓𝜓 0.0392 0.2580 0.2075 0.0075

To assess the significance of the fusion between lidar and radar in tracking. The UKF is tested in one time with

measurements from lidar alone, and another time with measurements from radar alone. The results reported in
Table 6 show how fusion makes the difference and substantially improves accuracy. The estimation of all state
variables is spectacularly improved. For example, the RMSE of x-position (𝑝𝑝#) estimation is reduced by 60%
compared to “lidar-alone” and 60% compared to “radar-alone” estimations. Moreover, the RMSE of x-velocity (𝑣𝑣#)
estimation is reduced by 30% compared to “lidar-alone” and 26% compared to “radar-alone” estimations. The NIS
values are calculated as well for “lidar-alone” and “radar-alone” cases to test the consistency of the UKF in their
cases. The reported values show that fusion significantly improves the consistency. The NIS values that exceed
the 95%-threshold have been reduced by 31% compared to the “lidar-alone” and 38.5% compared to the “radar-
alone” ones.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters126

The PF performance is also studied under various uncertainties of the reference map. The uncertainties are
modeled by the standard deviation of the positions of the pole-like landmarks stated in the reference map. Table 8
shows that an accurate reference map is crucial to the pose estimation of the ego-car; however, the RT_MCL shows
that it can handle uncertainties up to 2.0 meters (2𝜎𝜎7h4@) in map-poles poses and still can localize the ego-car with
less than 30 cm of error.

Table 8. Effect of the Landmark Standard Deviation.

𝝈𝝈𝒙𝒙𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝝈𝝈𝒚𝒚𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 x-error y-error Yaw-error

0.3 0.3 0.1143 0.1154 0.0040

0.5 0.5 0.1730 0.1633 0.0057

1.0 1.0 0.2926 0.2736 0.0098

Figure 6. Ego-car localization results in the test track.

127Wael Farag

Figure 7. Ego-car orientation estimation in the test track.

Figure 8. The ego-car speed and yaw rate during driving 3 laps in the test track.

Figure 9 shows the convergence performance of the particle filter during the initialization phase using 50

particles. The error stabilizes after 100 time-steps.

Figure 10 as well shows the performance of the particles’ weights for one lap travel on the test track. The figure

shows that the best weights are significantly higher the average weights which a sign of convergence robustness.
Moreover, there is a kind of inverse relationship between the number of detected landmarks and the value of the best
and average weight. Eq. (22) can be rewritten in a more streamlined form in Eq. (23). The later equation shows the
weight values are the product of the likelihood of the pole-landmark observation represented by a multivariate
Gaussian probability density function. The higher the number of observed landmarks the more the chance that some
of these landmarks have very small likelihood values that bring the whole product down. After many experiments, it
has been found that the reasonable value for the number of detected landmarks at each time-step for the robust running
of the RT_MCL lies in the range of 4→12 landmarks.

𝑤𝑤=
["] = ∏

@#7i-
GH!I
[)],J!I

[)]K

&L!DE6F
& -

GH"I
[)],J"I

[)]K

&L"DE6F
& j

+Jk!DE6Fk"DE6F

<
l)& (23)

The PF performance is also studied under various uncertainties of the reference map. The uncertainties are
modeled by the standard deviation of the positions of the pole-like landmarks stated in the reference map. Table 8
shows that an accurate reference map is crucial to the pose estimation of the ego-car; however, the RT_MCL shows
that it can handle uncertainties up to 2.0 meters (2𝜎𝜎7h4@) in map-poles poses and still can localize the ego-car with
less than 30 cm of error.

Table 8. Effect of the Landmark Standard Deviation.

𝝈𝝈𝒙𝒙𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝝈𝝈𝒚𝒚𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 x-error y-error Yaw-error

0.3 0.3 0.1143 0.1154 0.0040

0.5 0.5 0.1730 0.1633 0.0057

1.0 1.0 0.2926 0.2736 0.0098

Figure 6. Ego-car localization results in the test track.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters128

Figure 9. Performance during the particle filter initialization.

Figure 10. Performance of particle weights during driving one lap.

Figure 11. The number of detected pole-like landmarks during one lap.

129Wael Farag

The many experimentations of the RT_MCL pipeline proved to be fast enough in execution to be used in real-
time. Using an Intel Core i5 with 1.6 GHz and 8 GB RAM which is a very moderate computational platform, the
following measurements (Table 9) are collected for the execution of the RT_MCL for a single ego-car pose estimation
based on 12 pole-like landmarks.

Table 9. RT_MCL Execution Time for a Single Pose Estimation.

Task Exec. time

UKF state estimation for 12 landmarks 12×0.439 ms

GB-DBSCAN + RANSAC + ICP Clustering and data association 0.835 ms

PF pose estimation 0.739 ms

Control code overhead – 20% 1.368 ms

Total 8.210 ms

Table 9 shows it takes around 8.2 ms to execute the whole pipeline for single pose estimation. Most localization

functions run at 10Hz to 30Hz speed. Therefore, the proposed RT_MCL satisfies comfortably even the upper end of
this requirement.

By considering that the lidar/radar measurements are collected at approximately 30 fps rate (Yurtsever et al.

2020). Then the measurement cycle is 33.3 ms which is large enough to be utilized for considering more than 50
landmark detections using UKF according to the data in Table 9.

10. CONCLUSION

 In this paper, a real-time Monte Carlo Localization (RT_MCL) method for autonomous cars is proposed,
implemented, and described in detail. The method uses a tailored unscented Kalman filter to perform data fusion for
the mounted lidar and radar devices on the ego-car. The raw data of the lidar/radar are getting fused using the UKF
and then getting clustered using both GB-DBSCAN and RANSAC algorithms to produce the detected pole-like
landmarks’ poses. These detected landmarks are then associated with the ones in the supplied reference map using
the ICP algorithm. Then, a tailored particle filter is designed to produce estimated ego-car poses measured on the
global map coordinates.

The RT_MCL method is fully implemented using GCC C++ in addition to advanced math libraries to optimize

its real-time performance. The design steps, initialization, and tuning of both the UKF and the PF are described in
detail. The initialization and consistency evaluation of both filters has been explained as well. The generic object
motion model employed by both UKF and PF is comprehensive and is described using five state variables.

The validation results show that the proposed method is reliably able to detect pole-like landmarks and to

estimate the ego-car pose with an 11-cm mean error in real-time using only 50 particles. The measured throughput
(execution time) using an affordable CPU proved that the RT_MCL pipeline is very suitable for real-time ADAS or
self-driving car localization.

Figure 9. Performance during the particle filter initialization.

Figure 10. Performance of particle weights during driving one lap.

Figure 11. The number of detected pole-like landmarks during one lap.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters130

Both UKF and PF has shown that the RT_MCL pipeline can run at 30Hz while able to handle up to 50 landmark
detections. The reference map is represented in a probabilistic form by representing each landmark position by its
mean centroid and standard deviation. The RT_MCL shows it can handle uncertainties up to 2.0 meters in the
landmark centroids and still can localize the ego-car with less than 30-cm of error.

In the future, it is intended to add a front-camera to the presented fusion technique and further investigate the

benefits it will add to the overall localization performance. Furthermore, will augment the RT_MCL with other road
objects like guardrails, sidewalks, curbs, and intersection features, etc. The employment of machine learning and
deep learning techniques (Farag et 1998; Farag et al. 1997) are also worth considering.

REFERENCES

Carlevaris-Bianco, N. Ushani, A.K. and Eustice R.M. 2015. University of Michigan north campus long-term
vision and lidar dataset. International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–1035.

Dietmayer, K. Kellner, D. & Klappstein, J. 2012. Grid-based dbscan for clustering extended objects in radar
data. IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, June.

Eigen 2020. http://eigen.tuxfamily.org/index.php?title=Main_Page, accessed on 11th March.
Einicke, G.A. & White, L.B. 1999. Robust Extended Kalman Filtering. IEEE Trans. Signal

Process., 47(9):2596–2599, Sept.
Farag, W. 1998. Synthesis of intelligent hybrid systems for modeling and control. Ph.D. Thesis, University of

Waterloo, Canada.
Farag, W. 2018. Recognition of traffic signs by convolutional neural nets for self-driving vehicles. International

Journal of Knowledge-based and Intelligent Engineering Systems, IOS Press. 22(3):205-214.
Farag, W. 2019a. Traffic signs classification by deep learning for advanced driving assistance systems. Intelligent

Decision Technologies, IOS Press, 13(3): 215-231.
Farag, W. 2019b. Safe-driving cloning by deep learning for autonomous cars. International Journal of Advanced

Mechatronic Systems, Inderscience Publishers, 7(6):390-397.
Farag, W. 2019c. Cloning Safe Driving Behavior for Self-Driving Cars using Convolutional Neural Networks.

Recent Patents on Computer Science, Bentham Science Publishers, The Netherlands, 12(2):120-127(8).
Farag, W. 2020a. A Comprehensive Real-Time Road-Lanes Tracking Technique for Autonomous Driving.

International Journal of Computing and Digital Systems (IJCDS), 9 (3):349-362.
Farag, W. 2020b. Complex Trajectory Tracking Using PID Control for Autonomous Driving. International

Journal of Intelligent Transportation Systems Research, Springer, 18:356–366.
Farag, W. 2020c. Real-Time Detection of Road Lane-Lines for Autonomous Driving. Recent Advances in

Computer Science and Communications, Betham Science, 13(2): 265-274.
Farag, W. 2020d. A Comprehensive Vehicle-Detection-and-Tracking Technique for Autonomous Driving.

International Journal of Computing and Digital Systems (IJCDS), 9 (4):567-580.
Farag, W. 2020e. A lightweight vehicle detection and tracking technique for advanced driving assistance systems.

Journal of Intelligent & Fuzzy Systems 39(3):2693-2710, IOS Press.
Farag, W. 2020f. Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving.

International Journal of Computing and Digital Systems (IJCDS), 9(5):909-920.
Farag, W. 2021a. Real-Time Autonomous Vehicle Localization Based on Particle and Unscented Kalman

Filters. Journal of Control, Automation and Electrical Systems, Springer, Vol. 32, pp. 309–325.

131Wael Farag

Farag, W. 2021b. Complex-Track Following in Real-Time Using Model-Based Predictive Control. International
Journal of Intelligent Transportation Systems Research, Springer, April, Vol. 19, No. 4, pp. 112–127.

Farag, W. Saleh, Z. 2018a. Road Lane-Lines Detection in Real-Time for Advanced Driving Assistance Systems.
Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18),
Bahrain, 18-20 Nov.

Farag, W. Saleh, Z. 2018b. Behavior Cloning for Autonomous Driving using Convolutional Neural Networks.
Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18),
Bahrain, 18-20 Nov.

Farag, W. Saleh, Z. 2018c. Tuning of PID Track Followers for Autonomous Driving. Intern. Conf. on Innovation
and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18-20 Nov.

Farag, W. Saleh, Z. 2019a. An Advanced Road-Lanes Finding Scheme for Self-Driving Cars. 2nd Smart Cities
Symposium (SCS'19), IET Digital Library, Bahrain, 24-26 March.

Farag, W. Saleh, Z. 2019b. An Advanced Vehicle Detection and Tracking Scheme for Self-Driving Cars. 2nd
Smart Cities Symposium (SCS’19), IET Digital Library, Bahrain, 24-26 March.

Farag, W. Saleh, Z. 2019c. MPC Track Follower for Self-Driving Cars. 2nd Smart Cities Symposium (SCS’19),
IET Digital Library, Bahrain, 24-26 March.

Farag, W. Quintana, VH. Lambert-Torres, G. 1998. Genetic algorithms and back-propagation: a comparative
study. Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat.
No. 98TH8341), Canada, May 25th.

Farag, W. Quintana, VH. Lambert-Torres, G. 1997. Neuro-Fuzzy Modeling of Complex Systems Using
Genetic Algorithms. IEEE International Conference on Neural Networks (IEEE ICNN'97), Houston, USA,
June 12th.

Fischler, M. & Bolles, R. 1981. Random Sample Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Comm. ACM, 24(6):381–395, June.

GCC C++ 2020. https://gcc.gnu.org/, accessed on 11th March.
Kummerle, J. Sons, M. Poggenhans, F. Kuehner, T. Lauer, M. & Stiller, C. 2019. Accurate and efficient self-

localization on roads using basic geometric primitives. 2019 IEEE International Conference on Robotics and
Automation, May.

Kuutti, S. Fallah, S. Katsaros, K. Dianati, M. Mccullough, F. & Mouzakitis, A. 2018. A Survey of the State-
of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 829-846, April.

Levinson J. & Thrun S. 2010. Robust vehicle localization in urban environments using probabilistic maps. 2010
IEEE International Conference on Robotics and Automation, May, pp. 4372–4378.

Levinson, J. Montemerlo, M. & Thrun, S. 2007. Map-Based Precision Vehicle Localization in Urban
Environments. Conference: Robotics: Science and Systems III, June 27-30, , Georgia Institute of Technology,
Atlanta, Georgia, USA.

Lu F. & Milios, E. 1997. Robot pose estimation in unknown environments by matching 2d range scans. Journal
of Intelligent and Robotic Systems, vol. 18, no. 3, pp. 249–275.

Modsching M. Kramer R. & Hagen K. 2006. Field trial on GPS accuracy in a medium-size city: the influence
of built-up. 3rd Workshop on Positioning, Navigation and Communication, vol. 2006, pp. 209–218.

Nagiub, M. & Farag, W. 2013. Automatic selection of compiler options using genetic techniques for embedded
software design. IEEE 14th Inter. Symposium on Comp. Intelligence and Informatics (CINTI), Budapest,
Hungary, Nov. 19.

Both UKF and PF has shown that the RT_MCL pipeline can run at 30Hz while able to handle up to 50 landmark
detections. The reference map is represented in a probabilistic form by representing each landmark position by its
mean centroid and standard deviation. The RT_MCL shows it can handle uncertainties up to 2.0 meters in the
landmark centroids and still can localize the ego-car with less than 30-cm of error.

In the future, it is intended to add a front-camera to the presented fusion technique and further investigate the

benefits it will add to the overall localization performance. Furthermore, will augment the RT_MCL with other road
objects like guardrails, sidewalks, curbs, and intersection features, etc. The employment of machine learning and
deep learning techniques (Farag et 1998; Farag et al. 1997) are also worth considering.

REFERENCES

Carlevaris-Bianco, N. Ushani, A.K. and Eustice R.M. 2015. University of Michigan north campus long-term
vision and lidar dataset. International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–1035.

Dietmayer, K. Kellner, D. & Klappstein, J. 2012. Grid-based dbscan for clustering extended objects in radar
data. IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, June.

Eigen 2020. http://eigen.tuxfamily.org/index.php?title=Main_Page, accessed on 11th March.
Einicke, G.A. & White, L.B. 1999. Robust Extended Kalman Filtering. IEEE Trans. Signal

Process., 47(9):2596–2599, Sept.
Farag, W. 1998. Synthesis of intelligent hybrid systems for modeling and control. Ph.D. Thesis, University of

Waterloo, Canada.
Farag, W. 2018. Recognition of traffic signs by convolutional neural nets for self-driving vehicles. International

Journal of Knowledge-based and Intelligent Engineering Systems, IOS Press. 22(3):205-214.
Farag, W. 2019a. Traffic signs classification by deep learning for advanced driving assistance systems. Intelligent

Decision Technologies, IOS Press, 13(3): 215-231.
Farag, W. 2019b. Safe-driving cloning by deep learning for autonomous cars. International Journal of Advanced

Mechatronic Systems, Inderscience Publishers, 7(6):390-397.
Farag, W. 2019c. Cloning Safe Driving Behavior for Self-Driving Cars using Convolutional Neural Networks.

Recent Patents on Computer Science, Bentham Science Publishers, The Netherlands, 12(2):120-127(8).
Farag, W. 2020a. A Comprehensive Real-Time Road-Lanes Tracking Technique for Autonomous Driving.

International Journal of Computing and Digital Systems (IJCDS), 9 (3):349-362.
Farag, W. 2020b. Complex Trajectory Tracking Using PID Control for Autonomous Driving. International

Journal of Intelligent Transportation Systems Research, Springer, 18:356–366.
Farag, W. 2020c. Real-Time Detection of Road Lane-Lines for Autonomous Driving. Recent Advances in

Computer Science and Communications, Betham Science, 13(2): 265-274.
Farag, W. 2020d. A Comprehensive Vehicle-Detection-and-Tracking Technique for Autonomous Driving.

International Journal of Computing and Digital Systems (IJCDS), 9 (4):567-580.
Farag, W. 2020e. A lightweight vehicle detection and tracking technique for advanced driving assistance systems.

Journal of Intelligent & Fuzzy Systems 39(3):2693-2710, IOS Press.
Farag, W. 2020f. Complex Track Maneuvering using Real-Time MPC Control for Autonomous Driving.

International Journal of Computing and Digital Systems (IJCDS), 9(5):909-920.
Farag, W. 2021a. Real-Time Autonomous Vehicle Localization Based on Particle and Unscented Kalman

Filters. Journal of Control, Automation and Electrical Systems, Springer, Vol. 32, pp. 309–325.

Bayesian Localization in Real-Time using Probabilistic Maps and Unscented-Kalman-Filters132

Piché, R. 2016. Online tests of Kalman filter consistency. Intern. Journal of Adaptive Control and Signal
Processing. 30(1):115–124.

Sander, J. Xu, X. Ester, M. & Kriegel, H-P. 1996. A density-based algorithm for discovering clusters in large
spatial databases with noise. Proc. of the 2nd Inter. Conf. on Knowledge Discovery and Data Mining, pp. 226–
231, August.

Sefati, M. Daum, M. Sondermann, B. Kreisk, K.D. & Kampker, A. 2017. Improving vehicle localization using
semantic and pole-like landmarks. 2017 IEEE Intelligent Vehicles Symposium, June, pp. 13–19.

Schaefer, A. Büscher, D. Vertens, J. Luft, L. & Burgard, W. 2019. Long-Term Urban Vehicle Localization
Using Pole Landmarks Extracted from 3-D Lidar Scans. European Conference on Mobile Robots (ECMR),
Czech Republic, 4-6 Sept.

Schubert, R. Richter, E. & Wanielik, G. 2008. Comparison and Evaluation of Advanced Motion Models for
Vehicle Tracking. 11th Inter. Conf. on Information Fusion, Cologne, Germany, July.

Suhr, J.K. Jang, J. Min, D. & Jung, H.G. 2017. Sensor Fusion-Based Low-Cost Vehicle Localization System
for Complex Urban Environments. IEEE Trans. on Intelligent Transportation Systems, Vol. 18(5), May.

Thrun, S. 2002. Particle Filters in Robotics. Proceedings of 18th Annual Conf. on Uncertainty in AI (UAI),
Edmonton, Canada.

Ubuntu Linux 2020. https://www.ubuntu.com/, accessed on 11th March.
Wan, E.A. & Van Der Merwe, R. 2000. The unscented Kalman filter for nonlinear estimation. IEEE Adaptive

Sys. for Signal Processing, Comm., and Control Symposium, Alberta, Canada, Oct.
Weng, L. Yang, M. Guo, L. Wang, B. & Wang, C. 2018. Pole-based realtime localization for autonomous

driving in congested urban scenarios. 2018 IEEE International Conference on Real-time Computing and
Robotics, August, pp. 96–101.

Woo, A. Fidan, B. & Melek, W.W. 2019. Localization for Autonomous Driving. Handbook of Position Location:
Theory, Practice, and Advances, 2nd Ed., Wiley.

Yurtsever, E. Lambert, Carballo, J. & Takeda, A. K. 2020. A Survey of Autonomous Driving: Common
Practices and Emerging Technologies. IEEE Access, vol. 8, pp. 58443-58469.
doi:10.1109/ACCESS.2020.2983149.

Zarchan, P. & Musoff, H. 2013. Fundamentals of Kalman Filtering: A Practical Approach. American Institute
of Aeronautics and Astronautics, Incorporated, 4th Ed., ISBN 978-1-62410-276-9.

Zhao, S. & Huang, B. 2017. On Initialization of the Kalman Filter. 6th Inter. Symposium on Adv. Control of Ind.
Processes (AdCONIP), Taipei, Taiwan, May 28-31.

