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ABSTRACT 

In this paper, a real-time road-object detection and tracking (LR_ODT) method for autonomous driving is 
proposed. The method is based on the fusion of lidar and radar measurement data, where they are installed on the ego 
car, and a customized unscented Kalman filter (UKF) is employed for their data fusion. The merits of both devices 
are combined using the proposed fusion approach to precisely provide both pose and velocity information for objects 
moving in roads around the ego car. Unlike other detection and tracking approaches, the balanced treatment of both 
pose estimation accuracy and its real-time performance is the main contribution in this work. The proposed technique 
is implemented using the high-performance language C++ and utilizes highly optimized math and optimization 
libraries for best real-time performance. Simulation studies have been carried out to evaluate the performance of the 
LR_ODT for tracking bicycles, cars, and pedestrians. Moreover, the performance of the UKF fusion is compared to 
that of the extended Kalman filter fusion (EKF) showing its superiority. The UKF has outperformed the EKF on all 
test cases and all the state variable levels (-24% average RMSE). The employed fusion technique shows how 
outstanding is the improvement in tracking performance compared to the use of a single device (-29% RMES with 
lidar and -38% RMSE with radar). 

 
Keywords: Sensor fusion; Kalman filter; Object detection and tracking; Advanced driving assistance systems; 

Autonomous driving. 
 

I.   INTRODUCTION 

Improving safety, lowering road accidents, boosting energy efficiency, enhancing comfort, and enriching 
driving-experience are the most important driving forces behind equipping present-day cars with Advanced Driving 
Assistance Systems (ADAS) (Farag, W. 2019a, Farag et al., 2018a, and Farag, W. 2020a). Many ADAS functions 
represent incremental steps toward a hypothetical future of safe fully autonomous cars (Farag et al., 2018b, Farag, 
W. 2019b, Farag, W. 2019c, and Farag et al. 2019c).  

 
A critical component of the various ADAS features that are also highly required in autonomous cars is the 

recognition and accurate assessment of the surroundings (Farag, W. 2018, Farag et al. 2018c, Farag, W. 2020b, and 
Farag, W. 2020c). This component depends on data observed from sensors mounted on the ego car (Farag et al., 
2019a, Farag et al., 1998, and Farag et al., 1997). If there is an object close by, it is of interest to know where that 
object is, what the object’s velocity is, and if the object can be described by a plain geometric shape (Farag et al., 
2019b). Lidar and radar are ones of the sought-after sensors for exploiting in ADAS and autonomous-car features 
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benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on 
a highway and a bend). 

 
The emphasis of this paper is on the data fusion between lidar and radar for road-objects’ tracking. The proposed 

technique is the acronym: a lidar/radar-based road-object detection and tracking technique (LR_ODT). According to 
the presented state of the art, two different general fusion methods can be distinguished and both were applied for 
lidar and radar: Kalman filter and evidence theory. However, approaches that apply any of these methods agree on 
the main steps. Meanwhile, the technique that has been adopted in this work is based on using Kalman filters. Despite 
the previously mentioned works (Jahromi et al., 2019), the literature still clearly lacks the investigation of employing 
the UKF (Wan et al., 2000; Julier et al., 2004) for lidar/radar fusion while applied for road-object tracking for 
autonomous driving. Therefore, this paper will mainly focus on the tailoring and implementation of UKF for tracking 
various road objects. The UKF design will be validated by tracking three road-objects: car, bicycle, and pedestrian. 
A quantitative comparison between the performances of the UKF versus that of the EKF (Einicke et al., 1999; Best 
et al., 2017), as well as a quantitative comparison between the performance of the LR_ODT with and without the 
employment of lidar/radar fusion, is carried out. 

 
The contribution of this paper can be enumerated as follows: 

1.   tailoring the UKF as well as the EKF algorithms to fuse multiple radars and lidars data to achieve more accurate 
pose data for moving objects around the ego car, proving that the UKF-based method has better performance 
but the EKF-based method is less computationally demanding; 

2.   employing a high-order-generic-object-motion model (5 state variables that suits the most common road-
objects: car, bicycle, and pedestrian) in the development of the UKF and EKF to generate more accurate 
estimates and improve the overall performance; 

3.   carrying out a quantitative comparative study between the sensor fusion performance using EKF and UKF 
using the same use cases; 

4.   evaluating the gain of fusion by testing the UKF on three different cases (lidar + radar, lidar only, and radar 
only); 

5.   evaluating the real-time performance of both the EKF and UKF on a moderate computational platform; 
6.   employing the GB-DBSCAN clustering algorithm to detect potential objects from the lidar/radar raw data, and 

finding their centroid; 
7.   employing the RANSAC algorithm and object proposals for bicycle, car, and pedestrian for estimation of the 

detected object's cluster velocity as well as determining its corresponding geometrical shape. 

The paper is organized as follows. Section 0 gives an overview of the generic Kalman filter, Section 0 presents 
the moving object generic model that is used in the design of both the EKF and the UKF, Section 0 details the sensor 
fusion using the EKF, Section 0 details as well the sensor fusion using the UKF, Section 0 is dedicated to describe 
the implementation issues of both the EKF and the UKF, Section 0 presents the testing and evaluation results, and 
Section 0 concludes the work done in the paper and enumerates suggested improvements for future work. 

 

II. KALMAN FILTER OVERVIEW 

The Kalman filter (Zarchan et al., 2013) is a system of equations working together to form a predictor-update 
cyclic optimal estimator that minimizes the estimated error covariance. The KF estimates the state 𝑥𝑥 ∈ 𝑅𝑅$given the 
measurement 𝑧𝑧 ∈ 𝑅𝑅& of a discrete-time controlled process that is modeled by the following set of linear stochastic 
difference equations. 

 
 
 

 

(Yurtsever et al., 2020). A lidar always returns many concentrated detection points (point-cloud) that describe each 
detected object (Che et al., 2019;Xie et al., 2019). Likewise, a radar often returns multiple detections per target but 
not as dense as a lidar (Lidman et al., 2018). This means that it is necessary to group detections originating from the 
same target, that is, to cluster the detections, to obtain information about the surroundings (Farag, W. 2020d; Farag, 
W. 2020e). 

 
The ego car equipped with a lidar and radar receives a collection of raw data of sensors measurements that 

include information of detected road objects. Then, the proposed LR_ODT method employs a two-step approach to 
find and identify these road objects within the received data. The first step is to coarse cluster the lidar/radar raw data 
separately to detect objects within using the grid-based density-based spatial clustering of applications with noise 
(GB-DBSCAN) algorithm (Dietmayer et al., 2012). Accordingly, each object is then represented with its core point 
(centroid). The second step is the estimation of the object’s cluster velocity as well as determining its corresponding 
geometrical shape, which is performed using the random sample consensus (RANSAC) iterative algorithm (Fischler 
et al., 1981). 

 
As mentioned before, it is mandatory to have continuous, precise, and accurate velocity and position information 

about the objects surrounding the ego car. In this paper, this is accomplished by combining data from lidar and radar 
sensors. 

 
Recent lidars have a large range (up to 200 m) and a wide field of view and can thus track objects even at big 

distances (necessary at high speeds) and in curves (i.e., very accurate in position measurement) (Yurtsever et al., 
2020). Their main drawback is that they completely lack dynamic information about the detected objects (velocity 
measurement). Radar sensors, on the other hand, have a relatively narrow field of view and reduced angular resolution 
(less accurate in position measurement), but they use the Doppler effect to directly provide velocity information. The 
fusion of the data from both sensors can thus benefit from the combination of their merits (Gohring et al., 2011). 

 
Accordingly, sensor fusion of lidar and radar that combines the strengths of both sensor types is a logical step. 

This step has been investigated earlier in the literature, with promising prospects in the automotive industry 
(Kaempchen et al., 2004).   

 
As an early endeavor, Gohring et al. (Gohring et al., 2011) apply lidar-radar fusion for the application of car 

following on highways based on the Kalman filter (KF) (Zarchan et al., 2013). To test the performance of their fusion 
technique, the authors have formed the ground truth by computing the mean square errors of relative distances and 
velocities in a highway-tracking scenario using a least-squares polynomial approximation of sensors data. 

 
Moreover, to improve the perceived model of the environment, Chavez-Garcia et al. (Chavez-Garcia et al., 

2015) include the objects’ classification from multiple sensors (lidar, radar, and camera) detections as a key 
component of the object’s representation and the perception process that is based on a framework derived from 
evidence theory. The fusion approach is tested using real data from different driving scenarios and focusing on four 
objects of interest: pedestrian, bike, car, and truck. 

 
For tracking multiple objects, Rangesh et al. (Rangesh et al., 2019) propose a modular framework capable of 

accepting object proposals from different sensor modalities (cameras and lidars) and fuse them. The approach is 
tested on real-world highway data, showing its effectiveness to track objects through entire maneuvers around the 
ego-vehicle. 

 
For obstacle detection, Hajri et al. (Hajri et al., 2019) employ the global nearest neighbor standard filter (GNN) 

on the fused lidar/radar sensors data for associating new measurements with the underlying observed objects. The 
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Accordingly, the EKF process is represented as well by the prediction and update Equations (2) and (3), 
respectively, after replacing F with 𝑓𝑓 𝑥𝑥'*+, 𝑢𝑢' , H with ℎ 𝑥𝑥'*+  in Eq. (2), and F with Fj, H with Hj in Eq. (3).  

 

Due to EKF is using only the first-order derivative in the linearization process and ignoring the higher-order 
terms, errors are accumulated in the state and covariance estimation. The unscented Kalman filter is introduced 
(Wan et al., 2000) to overcome this limitation. The UKF is a derivative-free alternative to EKF that uses a 
deterministic sampling approach. The UKF utilizes as well the predict-update two-step process. However, they 
are now augmented with further steps like generation and prediction of sigma points as shown in  

Figure 1. 

 

 
 

Figure 1. UKF roadmap. 
 

In the UKF process, the state Gaussian distribution is represented using a minimal set of carefully chosen sample 
points, called sigma points. 𝑛𝑛K = 2𝑛𝑛 + 1 sigma points are selected based on the following rule: 

 
𝑋𝑋' = 𝑥𝑥'𝑥𝑥' + 𝜆𝜆 + 𝑛𝑛K 𝑃𝑃'𝑥𝑥' − 𝜆𝜆 + 𝑛𝑛K 𝑃𝑃' ,       (7) 
 

where 𝑋𝑋' is the sigma-point matrix which includes 𝑛𝑛K sigma-point vectors and 𝜆𝜆 is a design parameter that 
determines the spread of the generated sigma points and usually takes the form 𝜆𝜆 = 3 − 𝑛𝑛K. 
 

In the sigma-point prediction step, each generated sigma point is inserted in the UKF nonlinear process model 

𝑥𝑥' = 𝐹𝐹𝑥𝑥'*+ + 𝐵𝐵𝑢𝑢' + 𝜈𝜈' 

(1) 
𝑧𝑧' = 𝐻𝐻𝑥𝑥' + 𝜔𝜔' 

𝜈𝜈' ∼ 𝒩𝒩(0, 𝑄𝑄') 
𝜔𝜔' ∼ 𝒩𝒩(0, 𝑅𝑅'). 
 

𝐹𝐹 is the process state transition model, 𝐵𝐵 is the control-input model, 𝑢𝑢' is the control input, 𝐻𝐻 is the measurement 
model, 𝜈𝜈' is the process white noise which is the Gaussian distribution (𝒩𝒩) with zero mean and covariance matrix 
𝑄𝑄', and 𝜔𝜔' is the measurement white noise which is the Gaussian distribution (𝒩𝒩) with zero mean and covariance 
matrix 𝑅𝑅'. 
 

The KF estimation process works in two steps. 
 

1.   The predication step estimates the next state as follows: 
2.    

𝑥𝑥' = 𝐹𝐹𝑥𝑥'*+ + 𝐵𝐵𝑢𝑢', 
 (2) 𝑃𝑃' = 𝐹𝐹𝑃𝑃'*+𝐹𝐹: + 𝑄𝑄'. 

 
3.   The measurement update step works as follows: 
4.    

𝑦𝑦' = 𝑧𝑧' − 𝐻𝐻𝑥𝑥', 

(3) 

𝑆𝑆' = 𝐻𝐻𝑃𝑃'𝐻𝐻 + 𝑅𝑅', 
𝐾𝐾' = 𝑃𝑃'𝐻𝐻:𝑆𝑆'*+, 
𝑥𝑥' = 𝑥𝑥' + 𝐾𝐾'𝑦𝑦', 
𝑃𝑃' = 𝐼𝐼 − 𝐾𝐾𝐾𝐾 𝑃𝑃'. 
 
𝑃𝑃' is the KF process estimate covariance, 𝐾𝐾' is the KF gain, and 𝑆𝑆' is the measurement covariance matrix. 

However, the above equations are only limited to linear processes, and, accordingly, it is not suitable to the 
radar measurement process which is inherently nonlinear. Therefore, the extended Kalman filter (Einicke et al., 
1999) is introduced. The EKF estimation process is represented by Eq. (4) instead of Eq. (1) as follows: 

 
𝑥𝑥' = 𝑓𝑓 𝑥𝑥'*+, 𝑢𝑢' + 𝜈𝜈', 

(4) 𝑧𝑧' = ℎ 𝑥𝑥'*+ + 𝜔𝜔'. 
 

𝑓𝑓(. )	
  and	
  ℎ(. ) are nonlinear functions and can be linearized around an arbitrary operating point 𝜇𝜇 using the 
truncated Taylor series expansion as follows: 
 

𝑓𝑓 𝑥𝑥 = 𝑓𝑓 𝜇𝜇 + HI J
HK

𝑥𝑥 − 𝜇𝜇 , 
 (5) 

ℎ 𝑥𝑥 = ℎ 𝜇𝜇 + HI J
HK

𝑥𝑥 − 𝜇𝜇 . 
 
The derivatives of 𝑓𝑓(. )	
  and	
  ℎ(. ) with respect to 𝑥𝑥 are called Jacobians. The 𝐹𝐹L and 𝐻𝐻L Jacobians are calculated 

as in Eq (6) while taking the form of matrices of orders 𝑛𝑛×𝑛𝑛	
  and 𝑚𝑚×𝑛𝑛	
  , respectively. These matrices contain all 
the partial derivatives with respect to each state variable: 

 
𝐹𝐹L =

HI J
HK

, 
(6) 𝐻𝐻L =

HP J
HK

. 
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𝑃𝑃' is the KF process estimate covariance, 𝐾𝐾' is the KF gain, and 𝑆𝑆' is the measurement covariance matrix. 
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𝑓𝑓(. )	
  and	
  ℎ(. ) are nonlinear functions and can be linearized around an arbitrary operating point 𝜇𝜇 using the 
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HK
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 (5) 

ℎ 𝑥𝑥 = ℎ 𝜇𝜇 + HI J
HK
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The derivatives of 𝑓𝑓(. )	
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HI J
HK
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HP J
HK
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III. THE MOVING OBJECT MODEL 

The state of the moving object (Schubert et al., 2008) is determined by the five variables grouped into the state 
vector 𝑥𝑥 shown in Eq. (14), where 𝑝𝑝K, and 𝑝𝑝f are the object position in the x and y-axis, respectively. As shown in  

Figure 2, 𝑣𝑣 is the magnitude of object velocity derived from its x and y components, 𝑣𝑣K and 𝑣𝑣f, respectively.	
  𝜓𝜓 
is the yaw angle (object orientation) and 𝜓𝜓 is rate of change of the object-yaw angle. 

 

𝑥𝑥 =

𝑝𝑝K
𝑝𝑝f
𝑣𝑣
𝜓𝜓
𝜓𝜓

, 𝑣𝑣 = 𝑣𝑣K\ + 𝑣𝑣f\, 𝜓𝜓 = 𝑡𝑡𝑡𝑡𝑡𝑡*+ kl
kY

.        (14) 

 
The nonlinear 𝑥𝑥'V+ = 𝑓𝑓 𝑥𝑥', 𝜈𝜈'  difference equation that describes the motion model of the object is derived 

based on the state vector 𝑥𝑥 and presented in Equations (15) and (16). 
 

𝑥𝑥'V+ = 𝑥𝑥' +

km
nm

𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓' + 𝜓𝜓'Δ𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓'
km
nm

−𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓' + 𝜓𝜓'𝛥𝛥𝛥𝛥 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓'
0
Δ𝑡𝑡
0

+ 𝜈𝜈'.      (15) 

 

𝜈𝜈' =

+
\
Δ𝑡𝑡 \𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓' . 𝜈𝜈s,'

+
\
Δ𝑡𝑡 \𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓' . 𝜈𝜈s,'

Δ𝑡𝑡. 𝜈𝜈s,'
+
\
Δ𝑡𝑡 \. 𝜈𝜈n,'
Δ𝑡𝑡. 𝜈𝜈n,'

.         (16) 

 
Δ𝑡𝑡 = 𝑡𝑡'V+ − 𝑡𝑡'. 

(17) 𝜈𝜈s,'~𝒩𝒩(0, 𝜎𝜎s\). 
𝜈𝜈n,'~𝒩𝒩 0, 𝜎𝜎n

\ . 
 
Δ𝑡𝑡 is the time difference between two consecutive samples, 𝜓𝜓 is the yaw acceleration, 𝑎𝑎 is the longitudinal 

acceleration, 𝜈𝜈s,' is the longitudinal acceleration noise at sample 𝑘𝑘 with a standard deviation 𝜎𝜎s\, and 𝜈𝜈n,' is the 
yaw acceleration noise at sample 𝑘𝑘 with a standard deviation 𝜎𝜎n

\ . 
 
If 𝜓𝜓 is zero, to avoid dividing by zero in Eq. (15), then the following approximation is used to calculate the 

prediction of 𝑝𝑝K, and 𝑝𝑝f: 
 
𝑝𝑝Kmwx = 𝑝𝑝Km + 𝑣𝑣'𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓' Δ𝑡𝑡, (18) 
𝑝𝑝fmwx = 𝑝𝑝fm + 𝑣𝑣'𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓' Δ𝑡𝑡. 

 

given in Eq. (8) to produce the matrix of the predicted (estimated) sigma points, which has an 𝑛𝑛×𝑛𝑛K dimension. 
 
𝑋𝑋'V+ = 𝑓𝑓 𝑋𝑋', 𝜈𝜈' .       (8) 
 
In the next step, the predicted state-mean and covariance matrices are calculated from the predicted sigma points 

as given in Eq. (9): 
 
𝑥𝑥'V+ = 𝑤𝑤X𝑋𝑋'V+,X

$Y
XZ[ , 

(9) 
𝑃𝑃'V+ = 𝑤𝑤X 𝑋𝑋'V+,X − 𝑥𝑥'V+

\$Y
XZ[ 𝑋𝑋'V+,X − 𝑥𝑥'V+

:
, 

 
where 𝑤𝑤X′𝑠𝑠are the sigma-point weights that are used here to invert the spreading of the sigma points. These weights 
are calculated as shown in Eq. (10): 
 

𝑤𝑤X =
_

_V$Y
, 𝑖𝑖 = 0, 

(10) 𝑤𝑤X =
+

\(_V$Y)
, 𝑖𝑖 = 1…𝑛𝑛K, 

 
In the measurement prediction step, each generated sigma point is inserted in the UKF nonlinear measurement 

model given in Eq. (11) to produce the matrix of the predicted measurement sigma points, which has an 
𝑛𝑛×𝑛𝑛Kdimension.   

 
𝑍𝑍'V+ = ℎ 𝑋𝑋'V+ .       (11) 
 
In the next step, the predicted measurement-mean-and-covariance matrices are calculated from the predicted 

sigma points as well as the measurement noise covariance matrix R as given in Eq. (12): 
 
𝑧𝑧'V+ = 𝑤𝑤X𝑍𝑍'V+,X

$Y
XZ[ , 

(12) 𝑆𝑆'V+ = 𝑤𝑤X 𝑍𝑍'V+,X − 𝑧𝑧'V+
\$Y
XZ[ 𝑍𝑍'V+,X − 𝑧𝑧'V+

:
+ 𝑅𝑅, 

𝑅𝑅 = 𝐸𝐸 𝜔𝜔'. 𝜔𝜔'
: , 

 
where 𝑤𝑤X′𝑠𝑠 are the sigma-point weights that are determined using Equation (10). 
 

The final step is the UKF state update, where the UKF gain matrix (𝐾𝐾) is calculated as in Equation (13) using 
the calculated cross-correlation matrix (𝑇𝑇) between the sigma points in the state space and the measurement space. 
The gain is used to update the UKF state vector (𝑥𝑥) as well as the state covariance matrix (𝑃𝑃). 

 
𝑇𝑇'V+ = 𝑤𝑤X 𝑋𝑋'V+,X − 𝑥𝑥'V+

\$Y
XZ[ 𝑍𝑍'V+,X − 𝑧𝑧'V+

:
. 

(13) 
𝐾𝐾'V+ = 𝑇𝑇'V+𝑆𝑆'V+*+ . 
𝑥𝑥'V+ = 𝑥𝑥'V+ + 𝐾𝐾'V+ 𝑧𝑧'V+ − 𝑧𝑧'V+ . 
𝑃𝑃'V+ = 𝑃𝑃'V+ − 𝐾𝐾'V+𝑆𝑆'V+𝐾𝐾'V+: . 
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where 𝑤𝑤X′𝑠𝑠 are the sigma-point weights that are determined using Equation (10). 
 

The final step is the UKF state update, where the UKF gain matrix (𝐾𝐾) is calculated as in Equation (13) using 
the calculated cross-correlation matrix (𝑇𝑇) between the sigma points in the state space and the measurement space. 
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(13) 
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244 Multiple Road-Objects Detection and Tracking for Autonomous Driving

While GB-DBSCAN is used for coarse clustering, the RANSAC (Fischler et al., 1981) is used to fine-tune the 
clustering and associate geometrical shape proposals to potential coarse clusters. The output of the RANSAC is a 
fine-tuned object centroid (𝑝𝑝K and 𝑝𝑝f) and its type (bicycle, car, or pedestrian). 

 

 
 

Figure 3. Lidar and radar data fusion using EKF. 
 
The processed lidar measurement vector includes the moving object centroid position (𝑝𝑝K and 𝑝𝑝f) in Cartesian 

coordinates, while the radar measurement vector includes the moving object centroid position (𝜌𝜌, 𝜑𝜑) and radian 
velocity (𝜌𝜌)in polar coordinates as represented by Eq. (19). The mapping function that specifies how lidar Cartesian 
coordinates got mapped to the radar polar coordinates is given as well in Eq. (20) as follows.  

 

𝑧𝑧{X|s} =
𝑝𝑝K
𝑝𝑝f , 𝑧𝑧}s|s} =

𝜌𝜌
𝜑𝜑
𝜌𝜌

.         (19) 

ℎ 𝑥𝑥 =
𝜌𝜌
𝜑𝜑
𝜌𝜌

=

𝑝𝑝K\ + 𝑝𝑝f\

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �l
�Y

�YkYV�lkl

�YÄV�lÄ

.         (20) 

𝑝𝑝K = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜑𝜑 , 𝑝𝑝f = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜑𝜑 .         (21) 
 
The EKF state nonlinear model is the moving object model that is described in detail in Section 0 and 

mathematically represented by Equations (15-17). The Jacobian of this state model (𝐹𝐹L) is presented in Eq. (22), while 
the associated state covariance matrix (Q) is given by Equation (23). 

 
 

Figure 2. An object motion model. 
 

IV. SENSOR FUSION USING EKF 

 
Figure 3 presents the lidar and radar data fusion technique employing the EKF. The received sensor raw data 

(either lidar or radar) is getting processed before being supplied to the EKF. 
 
The processing is performed using clustering and association algorithms. DBSCAN (Sander et al., 1996) is an 

unsupervised clustering algorithm that groups together data points if the density of the points is high enough. It 
requires two parameters to determine the density. The first parameter is ε describing the radial distance from a point 
p, that is being evaluated. The second parameter is minPts, which is the least number of detections that have to be 
within a distance ε from p, including p itself, to form a cluster. By choosing ε and minPts, it is then possible to decide 
the necessary density for a group of points to form a cluster. However, these fixed parameters are not convenient if 
various types and topologies of road objects need to be detected. As an improvement to this algorithm, GB-DBSCAN 
is introduced (Dietmayer et al., 2012). It works in the same manner as DBSCAN but does not have fixed parameters. 
Instead, a polar grid is created according to the radial and angular resolution of the sensor. Instead of looking at a 
circular search area with a fixed radius, GB-DBSCAN is able to use a more dynamic, elliptic search area. 
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𝑅𝑅}s|s} =
𝜎𝜎ì\ 0 0
0 𝜎𝜎î\ 0
0 0 𝜎𝜎ì\

.         (26) 

 

𝜎𝜎ì is the noise standard deviation of the object radial distance, 𝜎𝜎î is the noise standard deviation of the object 
heading (bearing), and 𝜎𝜎ì is the noise standard deviation of the object yaw rate. 

 
As per the above presentation, each sensor has its own prediction update scheme. However, both sensors 

share the same state prediction scheme. The belief about the object’s position and velocity is updated 
asynchronously each time the measurement is received regardless of the source sensor.  
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  𝑅𝑅}s|s}) in Equations 
(2-3). Accordingly, the state vector (𝑥𝑥) is the product of the fusion between lidar and radar measurement data. 

 

V. SENSOR FUSION USING UKF 

 
Figure 4 presents the lidar and radar data fusion technique employing the UKF. After computing the elapsed 

time between consecutive sensor reading (∆𝑡𝑡), the sigma points (𝑋𝑋') are generated using Eq. (7), and then a next-
time-step prediction for sigma points (𝑋𝑋'V+) is carried out using Eq. (8) while employing the moving object 
nonlinear motion model given in Eq. (15). The resulted predicted sigma points are then used to compute the state 
mean (𝑥𝑥'V+) and covariance (𝑃𝑃'V+) matrices using Eq. (9). 

 
Then, the fusion technique thus branches into two directions based on the source of the last sensor data 

measurement. If the source is a radar, and employing the nonlinear radar measurement model (Eq. (20)), then the 
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Eq. (24) presents the lidar measurement model (𝐻𝐻{X|s}) as well as the measurement noise covariance matrix 
(𝑅𝑅{X|s}) based on the state vector in Eq. (14). These matrices are required for the update step of the EKF that is 
represented by Eq.(3). 
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𝜎𝜎ì is the noise standard deviation of the object radial distance, 𝜎𝜎î is the noise standard deviation of the object 
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Figure 4 presents the lidar and radar data fusion technique employing the UKF. After computing the elapsed 

time between consecutive sensor reading (∆𝑡𝑡), the sigma points (𝑋𝑋') are generated using Eq. (7), and then a next-
time-step prediction for sigma points (𝑋𝑋'V+) is carried out using Eq. (8) while employing the moving object 
nonlinear motion model given in Eq. (15). The resulted predicted sigma points are then used to compute the state 
mean (𝑥𝑥'V+) and covariance (𝑃𝑃'V+) matrices using Eq. (9). 
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Eq. (24) presents the lidar measurement model (𝐻𝐻{X|s}) as well as the measurement noise covariance matrix 
(𝑅𝑅{X|s}) based on the state vector in Eq. (14). These matrices are required for the update step of the EKF that is 
represented by Eq.(3). 
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to be 3 m/sec2 and 0.6rad/sec2. Similarly, the other parameters can be set, and, accordingly, Table I presents the 
fine-tuned parameters for both EKF and UKF. 

 
𝜎𝜎sis set to 3 m/sec2 because{-6, 6} m/sec2 is the expected boundary of the longitudinal acceleration (e.g., road 

vehicles) as statistically 95% of the time the acceleration will stay within the {-2𝜎𝜎s, 2𝜎𝜎s} range. The same principle 
applies to 𝜎𝜎n where the appraisal of how fast a vehicle can accelerate or decelerate while completing a circular 
path is guiding the selection of the set value of 0.6 rad/sec2. 
 

Table I. The Kalman filters noise parameters. 
 

Parameter EKF UKF 

𝜎𝜎sm/sec2 3.0 1.0 
𝜎𝜎sYm/sec2 3.0 --------- 
𝜎𝜎slm/sec2 3.0 --------- 
𝜎𝜎nrad/sec2 0.6 0.6 
𝜎𝜎nrad/sec 0.06 0.06 
𝜎𝜎�Y (lidar)m 0.15 0.15 
𝜎𝜎�l (lidar)m 0.15 0.15 
𝜎𝜎ñ (radar) m 0.3 0.3 
𝜎𝜎î (radar) rad 0.03 0.03 
𝜎𝜎ì (radar) m/sec 0.3 0.3 

 
B.   Consistency Measures for Kalman Filters 
 
The KF design is considered consistent if the estimation error (𝑦𝑦' in Eq. (3)) is unbiased. That is, it has zero-

mean and the actual mean square error of the filter matches the filter-calculated state covariance. As a measure of 
filter consistency, the time-average Normalized Innovation Squared (NIS) (Piché, R. 2016) can be used to fine-
tune the noise parameters. The NIS follows a Chi-squared distribution (X2), and based on the number of the 
measurement-vector dimension; is used to assess whether KF’s noise assumptions are consistent with the realized 
measurements. The metric, described by Eq. (27), is used to calculate the 𝑁𝑁𝑁𝑁𝑁𝑁 value at each sample 𝑘𝑘 and then 
averaging these values (𝑁𝑁𝑁𝑁𝑁𝑁òkô}söô) over a moving window of measurements of length 𝑁𝑁.  

 
𝑁𝑁𝑁𝑁𝑁𝑁' = 𝑧𝑧'V+ − 𝑧𝑧' :𝑆𝑆'*+ 𝑧𝑧'V+ − 𝑧𝑧'  

(27) 
𝑁𝑁𝑁𝑁𝑁𝑁òkô}söô =

1
𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁'

'Zõ

'Z+

 

 
The radar’s measurement is a three-dimensional vector (three degrees of freedom). Therefore, for a consistent 

EKF or UKF design, the values of 𝑁𝑁𝑁𝑁𝑁𝑁' should be less than “7.815” in 95% of the time-steps. Likewise, the lidar’s 
measurement is a two-dimensional vector (two degrees of freedom). Therefore, for a consistent EKF or UKF 
design, the values of 𝑁𝑁𝑁𝑁𝑁𝑁' should be less than “5.991” in 95% of the time steps. 

 
In both sensors, 𝑁𝑁𝑁𝑁𝑁𝑁òkô}söô’s value should not be too low as it means the process uncertainty is highly 

overestimated, or too high as it means the process uncertainty is highly underestimated. It actually should be 
around the middle or the 2/3rd of their corresponding threshold ranges.  

 
 

Figure 4. Lidar and radar data fusion using UKF. 
 

VI. IMPLEMENTATION OF KALMAN FILTERS 

Both Kalman filters (EKF and UKF) are implemented using the high-performance language GCC C++(GCC 
C++ 2020) on Ubuntu Linux operating system (Ubuntu Linux 2020). This combination is fit for the required real-
time performance (Nagiub et al., 2013). A C++ numerical solver, matrix, and vector operations 
package“Eigen”(Eigen 2020) is used to numerically calculate the Jacobeans, object model, effectively performing 
the predict and update steps. 

 
In the following sections, several important matters that have a crucial effect on the Kalman filters design 

process will be highlighted and discussed. 
A.   Noise Parameters Setting 
 
The object motion model described by Equations (14-17) includes several noise parameters that need to be 

carefully set. To set the two process noise parameters as an example, the longitudinal acceleration noise standard 
deviation𝜎𝜎sand the yaw acceleration noise𝜎𝜎n, one has to approximate the expected top acceleration road objects 
that can exhibit both longitudinal and angular accelerations as an initial guess, then fine-tune these values through 
trial-and-error iterations. After, exhaustive tuning process, the most appropriate valuation for 𝜎𝜎sand 𝜎𝜎n is found 
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to be 3 m/sec2 and 0.6rad/sec2. Similarly, the other parameters can be set, and, accordingly, Table I presents the 
fine-tuned parameters for both EKF and UKF. 

 
𝜎𝜎sis set to 3 m/sec2 because{-6, 6} m/sec2 is the expected boundary of the longitudinal acceleration (e.g., road 

vehicles) as statistically 95% of the time the acceleration will stay within the {-2𝜎𝜎s, 2𝜎𝜎s} range. The same principle 
applies to 𝜎𝜎n where the appraisal of how fast a vehicle can accelerate or decelerate while completing a circular 
path is guiding the selection of the set value of 0.6 rad/sec2. 
 

Table I. The Kalman filters noise parameters. 
 

Parameter EKF UKF 

𝜎𝜎sm/sec2 3.0 1.0 
𝜎𝜎sYm/sec2 3.0 --------- 
𝜎𝜎slm/sec2 3.0 --------- 
𝜎𝜎nrad/sec2 0.6 0.6 
𝜎𝜎nrad/sec 0.06 0.06 
𝜎𝜎�Y (lidar)m 0.15 0.15 
𝜎𝜎�l (lidar)m 0.15 0.15 
𝜎𝜎ñ (radar) m 0.3 0.3 
𝜎𝜎î (radar) rad 0.03 0.03 
𝜎𝜎ì (radar) m/sec 0.3 0.3 

 
B.   Consistency Measures for Kalman Filters 
 
The KF design is considered consistent if the estimation error (𝑦𝑦' in Eq. (3)) is unbiased. That is, it has zero-

mean and the actual mean square error of the filter matches the filter-calculated state covariance. As a measure of 
filter consistency, the time-average Normalized Innovation Squared (NIS) (Piché, R. 2016) can be used to fine-
tune the noise parameters. The NIS follows a Chi-squared distribution (X2), and based on the number of the 
measurement-vector dimension; is used to assess whether KF’s noise assumptions are consistent with the realized 
measurements. The metric, described by Eq. (27), is used to calculate the 𝑁𝑁𝑁𝑁𝑁𝑁 value at each sample 𝑘𝑘 and then 
averaging these values (𝑁𝑁𝑁𝑁𝑁𝑁òkô}söô) over a moving window of measurements of length 𝑁𝑁.  
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The radar’s measurement is a three-dimensional vector (three degrees of freedom). Therefore, for a consistent 

EKF or UKF design, the values of 𝑁𝑁𝑁𝑁𝑁𝑁' should be less than “7.815” in 95% of the time-steps. Likewise, the lidar’s 
measurement is a two-dimensional vector (two degrees of freedom). Therefore, for a consistent EKF or UKF 
design, the values of 𝑁𝑁𝑁𝑁𝑁𝑁' should be less than “5.991” in 95% of the time steps. 
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overestimated, or too high as it means the process uncertainty is highly underestimated. It actually should be 
around the middle or the 2/3rd of their corresponding threshold ranges.  

 
 

Figure 4. Lidar and radar data fusion using UKF. 
 

VI. IMPLEMENTATION OF KALMAN FILTERS 

Both Kalman filters (EKF and UKF) are implemented using the high-performance language GCC C++(GCC 
C++ 2020) on Ubuntu Linux operating system (Ubuntu Linux 2020). This combination is fit for the required real-
time performance (Nagiub et al., 2013). A C++ numerical solver, matrix, and vector operations 
package“Eigen”(Eigen 2020) is used to numerically calculate the Jacobeans, object model, effectively performing 
the predict and update steps. 

 
In the following sections, several important matters that have a crucial effect on the Kalman filters design 

process will be highlighted and discussed. 
A.   Noise Parameters Setting 
 
The object motion model described by Equations (14-17) includes several noise parameters that need to be 

carefully set. To set the two process noise parameters as an example, the longitudinal acceleration noise standard 
deviation𝜎𝜎sand the yaw acceleration noise𝜎𝜎n, one has to approximate the expected top acceleration road objects 
that can exhibit both longitudinal and angular accelerations as an initial guess, then fine-tune these values through 
trial-and-error iterations. After, exhaustive tuning process, the most appropriate valuation for 𝜎𝜎sand 𝜎𝜎n is found 
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D.   Performance Measures for Kalman Filters 
 
To check the performance of the KF, in terms of how far the estimated results are from the true results (ground 

truth), there are many evaluation metrics (Saho et al., 2018). But perhaps the most common one is the Root Mean 
Squared Error (RMSE) given in Eq. (29). The metric is calculated over a moving window of measurements of 
length 𝑁𝑁 (Farag, W. 1998). 𝑥𝑥'ôêÇ is the estimated state vector of the KF given in Eq. (4), and 𝑥𝑥'Ç}úôis the true state 
vector supplied by the simulator or given as training data during the KF design phase. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 	
   +
õ

𝑥𝑥'ôêÇ − 𝑥𝑥'Ç}úô \'Zõ
'Z+ .        (29) 

 

VII. TESTING AND EVALUTION RESULTS 

Extensive trials-and-errors attempts are used to tune the many hyper-parameters of the LR_ODT. However, to 
be more consistent and accurate, numerical key performance indicators (KPIs) are constructed and coded as in Eq. 
(27) and Eq. (29) to evaluate the performance of the fusion technique under the given set of hyper-parameters. 

 
Several test tracks have been used to evaluate the performance of the LR_ODT under different sets of hyper-

parameters in an iterative tuning process. Examples of these test tracks are shown in  
Figure 5,  
 
Figure 6, and  
Figure 7. These tracks are representing three different moving objects, bicycle, car, and pedestrian, respectively, 

to emulate various motion profiles and velocities.  
 
Table III presents the testing results of the LR_ODT fusion algorithm that uses the UKF and compares it with 

that uses the EKF. The performance evaluation is carried out on the three test tracks. The RMSE KPI (Eq. (29)) is 
used to compare both UKF and EKF performances on the five state variables: 𝑝𝑝K, 𝑝𝑝f, 𝑣𝑣K, 𝑣𝑣f, and 𝜓𝜓. The KPI is 
comparing each estimated state variable to its ground-truth value and finding the error. The lower the value of the 
KPI is, the better the performance is. Moreover, the bicycle tracking results using the UKF are depicted in the form 
of x-y position (shown in  

Figure 8), longitudinal velocity (shown in  
Figure 9), yaw angle (shown in  
Figure 11), and yaw rate (shown in  
Figure 12). The bicycle tracking results using the EKF are reported in the third column of Table III and the 

estimated longitudinal velocity profile is depicted in  
Figure 10. 
 
The UKF Design-Consistency Indicator (NIS) Results are Reported in  
 
Table . The table reports values for the NIS by taking into consideration the estimated measurements by lidar 

alone, the estimated measurements by radar alone, and after combining both lidar and radar measurements. The 
values reported in the 5th column of the table show a very consistent filter design. All the values are significantly 
lower than 5%. 

 
To assess the significance of the fusion between lidar and radar in tracking, the UKF is tested in one time with 

measurements from lidar alone, and another time with measurements from radar alone. The results reported in  

C.   Initialization of Kalman Filters 
 
The proper initialization of the Kalman filter is very crucial to its subsequent performance (Zhao et al., 2017). 

The main initialized variables are the estimate state vector (𝑥𝑥) and its estimate covariance matrix (𝑃𝑃).  
 
The first two terms of the state vector 𝑥𝑥 given by Eq. (14) are 𝑝𝑝K and 𝑝𝑝fwhich are simply initialized using the 

first received raw sensor measurement. For the other three terms of the state vector, intuition augmented with some 
trial-and-error is used to initialize these variables as listed in Table II.  

 
The state covariance matrix is initialized as a diagonal matrix that contains the covariance of each variable 

estimate (Eq. (28)). The initialization logic works as follows. Little or almost no correlation among the state variables 
(independent variables) is assumed. Therefore, the off-diagonal terms (covariances between variables) are initialized 
to zeros. Each diagonal term represents the variance (confidence) of each state element estimate as shown in Eq. (28). 
The variance of each element is initialized depending on the a priori information about this element. Since the first 
two elements of the state vector (𝑝𝑝K and 𝑝𝑝f) are initialized using the first raw reading of the sensors, then both 𝜎𝜎�Y

\ and 
𝜎𝜎�l
\  are set to small values. However, little a priori information is known about the other three terms (𝑣𝑣, 𝜓𝜓, 𝜓𝜓). 

Therefore, they have been initialized to large values as listed in Table II. Note that radar velocity measurements (𝜌𝜌) 
cannot directly be used to initialize the state vector velocity (object velocity𝑣𝑣) as they are not the same. 

 

𝑃𝑃 =

𝜎𝜎�Y
\ 0 0 0 0
0 𝜎𝜎�l

\ 0 0 0

0 0 𝜎𝜎k\ 0 0
0 0 0 𝜎𝜎n

\ 0

0 0 0 0 𝜎𝜎
n
\

       (28) 

 
Table II. Initialization of Kalman filters states. 

 
Parameter EKF UKF 

𝑝𝑝Km 1st raw x-reading 1st raw x-reading 

𝑝𝑝fm 1st raw y-reading 1st raw y-reading 

𝑣𝑣	
  	
  	
  m/sec 0.0 0.0 

𝜓𝜓	
  	
  	
  rad 0.0 0.0 

𝜓𝜓rad/sec 0.0 0.0 

𝜎𝜎�Ym 1.0 1.0 
𝜎𝜎�lm 1.0 1.0 

𝜎𝜎km/sec 1000 1000 
𝜎𝜎nrad 1000 1000 
𝜎𝜎nm/sec2 1000 1000 

   
 
 



251Wael Farag
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Figure 6. Test track for a moving car. 
 

 
 

Figure 7. Test track for a walking pedestrian. 
Table III. Performance evaluation of Kalman filters. 

 

Table  show how fusion makes the difference and substantially improves accuracy. The estimation of all state 
variables is spectacularly improved. For example, the RMSE of x-position (𝑝𝑝K) estimation is reduced by 60% 
compared to “lidar-alone” and 60% compared to “radar-alone” estimations. Moreover, the RMSE of x-velocity (𝑣𝑣K) 
estimation is reduced by 30% compared to “lidar-alone” and 26% compared to “radar-alone” estimations. The NIS 
values are calculated as well for “lidar-alone” and “radar-alone” cases to test the consistency of the UKF in their 
cases. The reported values in  

 
Table  and the performance depicted in  
Figure 13 and  
Figure 14 show that fusion significantly improves the consistency. The NIS values that exceed the 95% threshold 

have been reduced by 31% compared to the “lidar-alone” and 38.5% compared to the “radar-alone” ones.   
 

Comparing UKF performance with that of the EKF, Table III details the results. It is obvious that UKF 
outperforms EKF at all velocity and motion profiles. The accuracy of all the estimated states is sustainably higher 
using the UKF. States that got affected more with non-linearities in the object model (e.g., 𝑣𝑣K, 𝑣𝑣f, and 𝜓𝜓) have 
seen more accuracy improvement. Comparing the velocity profiles in both  

Figure 9 and  
Figure 10 gives some insight into the achieved improvement. 
 

 

 
 

Figure 5. Test track for a moving bicycle. 
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 Lidar+radar Lidar only Radar only 

RMSE -𝑝𝑝K 0.0648 0.1612 0.2031 

RMSE -𝑝𝑝f 0.0809 0.1464 0.2539 

RMSE -𝑣𝑣K 0.1452 0.2082 0.1971 

RMSE -𝑣𝑣f 0.1592 0.2129 0.1871 

RMSE -𝜓𝜓 0.0392 0.0540 0.0480 

NIS -Average 2.2797 1.6941 2.6576 

NIS - Min 0.0012 0.04874 0.11309 

NIS - Max 14.749 12.997 12.183 

NIS > 95% 
threshold 2.2% 3.2 % 5.2 % 

 
 

 
 

Figure 8. Performance of the UKF position estimation on the bicycle track. 
 
 

Test Case State 
variable 

RMSE 
EKF 

RMSE 
UKF 

Percentage 
improvement 

Bicycle 

𝑝𝑝K 0.0959 0.0648 -32.43 % 

𝑝𝑝f 0.0931 0.0809 -13.10 % 

𝑣𝑣K 0.2953 0.1452 -50.83 % 

𝑣𝑣f 0.3750 0.1592 -57.55 % 

𝜓𝜓 0.0728	
   0.0392 -46.15 % 

Car 

𝑝𝑝K 0.1946 0.1857 -4.57 % 

𝑝𝑝f 0.1903 0.1899 -0.21 % 

𝑣𝑣K 0.5190 0.4745 -8.57 % 

𝑣𝑣f 0.8111 0.5075 -37.43 % 

𝜓𝜓 0.4037 0.2580	
   -36.09 % 

Pedestrian 

𝑝𝑝K 0.0758 0.0652 -13.98 % 

𝑝𝑝f 0.0842 0.0605 -28.15 % 

𝑣𝑣K 0.6323 0.5332 -15.67 % 

𝑣𝑣f 0.5807 0.5442 -6.29 % 

𝜓𝜓 0.2301 0.2075 -9.82 % 

 
 

Table 4. Consistency evaluation of Kalman filters. 
 

 NIS 
average 

NIS 
Min 

NIS 
Max 

NIS above 
95% 

threshold 

Radar 2.8054 0.05806 11.124 3.6 % 

Lidar 2.7903 0.00116 14.749 1.6 % 

Lidar+Radar 2.2797 0.00116 14.749 2.2% 

 
Table 5. Sensor fusion evaluation of the UKF (bicycle track). 

 



255Wael Farag

 Lidar+radar Lidar only Radar only 

RMSE -𝑝𝑝K 0.0648 0.1612 0.2031 

RMSE -𝑝𝑝f 0.0809 0.1464 0.2539 

RMSE -𝑣𝑣K 0.1452 0.2082 0.1971 

RMSE -𝑣𝑣f 0.1592 0.2129 0.1871 

RMSE -𝜓𝜓 0.0392 0.0540 0.0480 

NIS -Average 2.2797 1.6941 2.6576 

NIS - Min 0.0012 0.04874 0.11309 

NIS - Max 14.749 12.997 12.183 

NIS > 95% 
threshold 2.2% 3.2 % 5.2 % 

 
 

 
 

Figure 8. Performance of the UKF position estimation on the bicycle track. 
 
 

Test Case State 
variable 

RMSE 
EKF 

RMSE 
UKF 

Percentage 
improvement 

Bicycle 

𝑝𝑝K 0.0959 0.0648 -32.43 % 

𝑝𝑝f 0.0931 0.0809 -13.10 % 

𝑣𝑣K 0.2953 0.1452 -50.83 % 

𝑣𝑣f 0.3750 0.1592 -57.55 % 

𝜓𝜓 0.0728	
   0.0392 -46.15 % 

Car 

𝑝𝑝K 0.1946 0.1857 -4.57 % 

𝑝𝑝f 0.1903 0.1899 -0.21 % 

𝑣𝑣K 0.5190 0.4745 -8.57 % 

𝑣𝑣f 0.8111 0.5075 -37.43 % 

𝜓𝜓 0.4037 0.2580	
   -36.09 % 

Pedestrian 

𝑝𝑝K 0.0758 0.0652 -13.98 % 

𝑝𝑝f 0.0842 0.0605 -28.15 % 

𝑣𝑣K 0.6323 0.5332 -15.67 % 

𝑣𝑣f 0.5807 0.5442 -6.29 % 

𝜓𝜓 0.2301 0.2075 -9.82 % 

 
 

Table 4. Consistency evaluation of Kalman filters. 
 

 NIS 
average 

NIS 
Min 

NIS 
Max 

NIS above 
95% 

threshold 

Radar 2.8054 0.05806 11.124 3.6 % 

Lidar 2.7903 0.00116 14.749 1.6 % 

Lidar+Radar 2.2797 0.00116 14.749 2.2% 

 
Table 5. Sensor fusion evaluation of the UKF (bicycle track). 

 



256 Multiple Road-Objects Detection and Tracking for Autonomous Driving

 
 

Figure 11. UKF-yaw-angle estimation performance on the bicycle track. 
 
 

 
 

Figure 12. UKF-yaw-rate estimation performance on the bicycle track. 
 
 

 
 

Figure 9. UKF-velocity-estimation performance on the bicycle track. 
 
 

 
 

Figure 10. EKF-velocity-estimation performance on the bicycle track. 
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The LR_ODT proved to be well enough fast in execution to be used in real-time. Using an Intel Core i5 with 1.6 
GHz and 8 GB RAM which is a very moderate computational platform. The following measurements (Table ) are 
collected for both EKF and UKF: 

 
Table 6. Sensor Fusion Execution Time of EKF and UKF. 

 

Phase EKF- µsec UKF - µsec 

Predict 4.827 27.32 

Update 16.40 14.20 

Total  21.23 41.52 

 
Table IV. LR_ODT Execution Time for Single Object. 

 

 EKF UKF 

State estimation execution time 0.637 msec 1.246 msec 

Clustering and object association 0.427 msec 0.835 msec 

Control code overhead – 20% 0.213 msec 0.416 msec 

Total– 30 fps 1.276msec 2.496 msec 

 
Table  shows how the EKF is twice faster than UKF. By considering that the lidar/radar measurements are 

collected at approximately 30 fps rate, then the measurement cycle is 33.3 msec which is large enough to be utilized 
for tracking 25 objects using EKF or 13 objects using UKF according to the data in Table IV. 

 
The proposed LR_ODT technique is fit for deployment in any kind of autonomous vehicles, like gas-powered 

vehicles or electric vehicles (Farag, W.  2020f). In autonomous electric vehicles, it will support functions like 
coordinated wheel control (Farag, W.  2020g), lateral control (Norouzi et al., 2019), lane change maneuver (Norouzi 
et al., 2018), and path tracking (Hang et al.,  2019; Farag, W.  2021). 

 

VIII. CONCLUSION 

In this paper, a real-time road-object detection and tracking method (LR_ODT) for autonomous cars is proposed, 
implemented, and described in detail. The method uses a tailored unscented Kalman filter to perform data fusion for 
the mounted lidar and radar devices on the ego car. The raw data of the lidar/radar are getting clustered using both 
GB-DBSCAN and RANSAC algorithms to produce the raw object’s pose and to determine its geometrical shape. 
The LR_ODT method is fully implemented using GCC C++in addition to advanced math libraries to optimize its 
real-time performance. The design steps, initialization, and tuning of both the EKF and the UKF are described in 
detail. The consistency evaluation of both filters has been explained as well. 

 
The validation results show that the proposed method is reliably able to detect and track three types of street 

objects: bicycle, car, and pedestrians on three different tracks and speed profiles. The employed generic object motion 
model is comprehensive and is described using five state variables. The UKF has outperformed the EKF on all test 

 

 
 

Figure 13. Lidar NIS values for UKF on the bicycle track. 
 
 

 
 

Figure 14. Radar NIS values for UKF on the bicycle track. 
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GB-DBSCAN and RANSAC algorithms to produce the raw object’s pose and to determine its geometrical shape. 
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real-time performance. The design steps, initialization, and tuning of both the EKF and the UKF are described in 
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The validation results show that the proposed method is reliably able to detect and track three types of street 

objects: bicycle, car, and pedestrians on three different tracks and speed profiles. The employed generic object motion 
model is comprehensive and is described using five state variables. The UKF has outperformed the EKF on all test 

 

 
 

Figure 13. Lidar NIS values for UKF on the bicycle track. 
 
 

 
 

Figure 14. Radar NIS values for UKF on the bicycle track. 
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cases and all the state variable levels (-24% average RMSE), despite its considerably more complex design and higher 
execution time.  

Comparing the validation results of the UKF applied to a single sensor to the one employing the fusion of 
multiple sensors shows how outstanding is the improvement in tracking performance using the later (-29% RMES 
with lidar and -38% RMSE with radar). 

 
The measured throughput (execution time) using an affordable CPU proved that the LR_ODT method is very 

suitable for real-time multi-object detection and tracking. 
 
In the future, it is intended to add a front-camera accompanied by a feature-extraction deep learning technique 

to the presented fusion technique and further investigate the benefits it will add to the overall tracking performance. 
Furthermore, the LR_ODT will be augmented with other road objects like guardrails, trucks, animals, and so on. 
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ABSTRACT 

In this research, a green routing model is provided in a two-level network of cross docking given the shipping 
price. Three objectives were proposed in this model including: total cost reduction, shipping costs reduction and 
carbon emissions reduction. The overall objective of the model, is getting the best route in the distribution network 
which will impose the least cost and also minimizes emissions of environmental pollutants. For the model to approach 
the real situation, Pegah corporation’s warehouses and distribution network are considered as a case study. Solving 
the developed model was carried out by GAMS. By the size of the problem increasing, the running time of the program 
is notably increased and this means the problem is NP-hard. So, in order to solve the model in medium and large 
dimensions, we used meta-heuristic MOGWO and NSGA II algorithm. The results of investigating various problems 
with meta-heuristics, indicates the high performance of the proposed algorithm in terms of the time needed and the 
response achieved. Results indicated that the proposed model reduced the emission of environmental pollutants along 
with total cost and shipping cost reduction. Also given the time window, the products were shipped to customers in a 
timely manner. 

 
Keywords: Cross-docking; Routing; Environmental pollutants; Time windows; Pricing. 

 

INTRODUCTION 

Cross docking is a logistic strategy which aims to reduce inventory and increase customer satisfaction (Buijs et 
al. 2014). Products are delivered to the customer through cross docking and before shipping the items to the customer 
they should be collected in cross docks and after that weighing, packing and sorting operations are done based on 
the destination, and they should be shipped out to customers in the shortest time possible by outgoing vehicles 
(Dondo Jaime Cerd, 2015). Cross docking mostly acts as an inventory coordinator than a warehouse (Peng-Yeng 
Yin, Ya- Lan Chuang, 2016). Products are usually stored in cross-docks for less than 24 hours and the cross-dock 
must be evacuated at the end of the working day (Reddy et al., 2016). Kinnear defined cross-docks as "receiving 
products from suppliers or manufacturers for various end-users and combining them with other suppliers’ products 
for the ultimate purpose" (Kinnear, 1997). Since cross docks have benefits such as cost savings, supply and delivery 
reduction, customer service upgrade, storage space reduction, inventory turnover period reduction, inventory 
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