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ABSTRACT 

An efficient numerical technique for the solution of the pulp washing model is proposed in this study. Two 
linear and one nonlinear model are explained with quintic Hermite collocation method (QHCM). In this technique, 
quintic Hermite polynomials (C2 continuous) are used as a basis function, and an orthogonal collocation method is 
applied within each element of the partitioned domain. For accuracy and applicability of the method, a comparison 
of the numerical results with analytic ones is made. The method is found to be stable using stability analysis and 
convergence criteria. The effect of Peclet number on exit solute concentration and other parameters is presented in 
the form of breakthrough curves. The results are derived for a broad range of parameters, and the present method is 
found to be more efficient and refined for solving the two-point boundary value problems.  
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INTRODUCTION 

Pulp washing is an important process in the paper industry, which needs to be performed in an ecological and 
efficient manner. The solute (Na salts and lignin derivatives) inside the pulp matrix is removed by the introduction 
of wash liquor. The process can be described using material balance equation as follows:  
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Mathematically, this equation involves different variables and their partial derivatives. These equations along 
with various linear and nonlinear adsorption isotherms describe the relationship between the concentration of the 
solute adsorbed on fibers and the solute in the flowing liquor (Kukreja et al.,1995). A detailed review of various 
models used to describe the pulp washing process has been presented by Pekkanen & Norden (1985). Besides this, 
Lapidus & Amundson (1952), Brenner (1962), Sherman (1964), Grähs (1974), Liu & Bhatia (2001), and Tervola 
(2006) have studied these pulp washing models using boundary value problems (BVPs) for different boundary 
conditions and examined the effect of different parameters on wash efficiency. Brenner (1962) and Kukreja et al. 
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Mittal et al. (2013) obtained the numerical solution of this problem with CHCM and found the technique of CHCM 
more suitable than OCFE. 
  

Linear Model 2 

Consider the linear model 1 with mixed boundary conditions defined as            
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Brenner (1962) solved this problem by Laplace transform method. Further, Arora et al. (2005) solved the model 
with OCFE. Both studies found satisfactory results.  
 

Nonlinear model 

The unsteady state partial differential equation describing the phenomenon of longitudinal mixing is given as 
follows: 
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Nonlinear Langmuir adsorption isotherm is 0
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where A0 and B0 are Langmuir constants. Boundary conditions and initial conditions assumed are the same as those 
in linear model 2. The dimensionless form of the model is 
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Earlier, these model equations with linear isotherm were solved by Kukreja & Ray (2009) using the Laplace 
Transform method. Further, Arora (2005) solved the nonlinear problem using OCFE, and Mittal et al. (2013) obtained 
the solution of the above problem using CHCM. All these studies achieved notable results. 

  

QUINTIC HERMITE COLLOCATION METHOD (QHCM) 

In the present study, quintic Hermite polynomials are taken as basis function in OCM to solve the above 
problems. The subsidiary continuity condition of first and second derivatives at the boundary of each element is 
not required in these polynomials; therefore, the number of equations is reduced considerably (Dyksen & Lynch, 
2000). The domain 0 1ξ≤ ≤  is divided into a finite number of subparts called elements by inserting 

1 2 1, ,..., Nξ ξ ξ +
 points such that 1 0ξ = and 1 1Nξ + = with 1k k kh ξ ξ+= − . A new variable ( )k ku hξ ξ= −  is 

(1995) obtained the analytic solution of some models using Laplace transform. A detailed study of these methods 
revealed that the analytic solution is complex and less suitable for nonlinear problems.  

 
Sun & Meunier (1991) used the finite difference method (FDM) to solve these models and found that it requires 

a strict selection of step size for stability. Al-Jabari et al. (1994) and Liu & Bhatia (2001) solved these models with 
the Galerkin/Petrov Galerkin method. Some other authors (Villadsen & Stewart, 1967; Grähs, 1974) used the 
orthogonal collocation method (OCM) to derive the solution. However, the results obtained using these methods were 
also not much suitable for a large number of collocation points (Shiraishi, 2001). In addition, the problem of 
increasing oscillations obtained for the large values of parameters is handled with Orthogonal Collocation on Finite 
element (OCFE) method. The approximation technique of OCFE is proposed by Carey & Finlayson (1975) and is 
used for a large number of interior collocation points. Arora et al. (2005) and Liu & Jacobsen (2012) used OCFE 
method and established its  accuracy . Further, Ganaie et al. (2013) and Mittal et al. (2013) applied the cubic Hermite 
collocation method (CHCM) using cubic Hermite polynomials as a trial function, which follows the property of 
continuity of function and its first-order derivative. They also proved the efficiency and high order of accuracy of this 
method over OCFE.  

 
In this work, quintic Hermite polynomials (which are C2 continuous) are used as the basis function. Arora et al. 

(2020) also used this method to solve the Burgers’ equation. The number of equations and their mathematical 
complexity are reduced in this method, because the trial function and their derivatives are continuous at the grid 
points. To check the accuracy, validity, and applicability of the method, the results are compared with analytic 
solution obtained by Brenner (1962); Grähs (1974) and numerical solution of Mittal et al. (2013). Thereafter, the 
technique is extended to the nonlinear problem and to examine the effect of fundamental parameters on exit 
concentration profiles of the adsorbed solute. The procedure used for the selection of collocation points, stability 
analysis, and convergence criteria are discussed in the next sections.  

 

PROBLEM FORMULATION 

This section describes the model equations to be solved using the technique of QHCM.  
 

Linear Model 1 

Consider the dimensionless form of the linear model representing diffusion dispersion problem with Dirichlet’s 
boundary conditions as 
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Initial condition:    ( ,0) 1C ξ =                (3) 

Grähs (1974) solved the above problem with OCM and found the analytic solution to this problem. However, 
Arora et al. (2005) efficiently solved the model with OCFE method and achieved better results than OCM. Further, 
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where 2,3,4,5r =  (interior collocation points) and 1,2,...,k N=  (number of elements).  
 
By the technique of QHCM, the above system of partial differential equations is reduced into a system of ordinary 
differential equations and is solved using MATLAB’s ode 15s. 
 

Error and Convergence Criteria 

Arora & Kaur (2020) tested the stability of the method using Euclidean norms and supremum norms given as 
follows: 

 

 2
2

1

N

j
L h E

=

= ∑     and     max
j

L E
∞
=    

 

where the point-wise error is defined by E such that ( )exact
j N jE c c= −  for exact

jc  is the exact solution and 
( )N jc is the numerical solution. According to Edoh et al. (2000), it is not an easy task to calculate the residual for 
nonlinear BVPs. However, according to Arora et al. (2005), the stability analysis for these models can be checked 
on the basis of numerical results obtained using 2 1L ≤ . Further, Onah (2002) explained that the time-dependent 
function converges to a steady-state solution when t→∞ .  

 

 RESULTS AND DISCUSSION 

In this section, the results of this study are described in detail. The results of linear and nonlinear problems are 
obtained using the technique of QHCM and CHCM. Thereafter, the comparison between the two methods is given 
for different parameters. The stability, convergence, and efficiency of the method are discussed and compared with 
the previous techniques in the next paragraphs.   
 

Comparison Between Analytic and Numerical Results 

The numerical results obtained by dividing the domain into 30 elements from linear model 1 using QHCM are 
compared with the analytic results given by Grähs (1974) for Peclet number (Pe) = 1, 10, and 40 and presented in 
Figure 1. It is seen that numerical results match best with analytic ones. Also, with the increase in time, the solution 
profile converges to steady-state condition, which validates the convergence criteria.  

introduced such that u varies from 0 to1 whenξ  varies from kξ to 1kξ + . Thereafter, OCM is applied within each 
element for the 4 collocation points with N intervals. 
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where the detailed description of standard quintic Hermite basis functions k
qH ’s is available with Kaur et al. 

(2018). 
 

Selection of Collocation Points 

The selection of collocation points plays a substantial role in the collocation techniques (Villadsen & Stewart, 
1967). These points are taken as the roots of orthogonal polynomials. In QHCM, zeros of 4th order shifted Legendre 
polynomial are used as collocation points. These polynomials are a special case of orthogonal polynomial such as 
Jacobi polynomials and give accurate results (Andrews, 1984).  
 

Discretized form of Model 

Discretized form of the linear model is as follows: 
 

6 6 6
3( 1)

3( 1) 3( 1)2
1 1 1

1 1( ) ( ) ( )
r
q k k r k r k

q r q k q r q k q r
q q qkk

da
H u a H u a H u

dt hPeh
+ −

+ − + −
= = =

ʹ′ʹ′ ʹ′= −∑ ∑ ∑                         (12)

 

where 2,3,4,5r =  (interior collocation points) and 1,2,...,k N=  (number of elements).  

Discretized form of nonlinear model is as follows: 
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Discretized form of nonlinear model is as follows: 
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Stability Analysis Using  Norms and Comparison with CHCM 

The stability analysis for QHCM using  (Euclidean) and  (maximum) norms for both linear models is 
presented below. The maximum absolute error of QHCM is obtained by using the exact solution given by Grähs 
(1974) for linear model 1 and by Brenner (1962) for linear model 2 for a different range of Peclet number (Pe).  
Thereafter, the comparison is drawn with the technique CHCM used by Mittal et al. (2013) in Table 1. It is observed 
that the error derived for both the norms using CHCM is greater than that by using QHCM in all the cases for both 
models. Also, both norms lie between 0 and 1. Hence, QHCM is found to be more stable than CHCM. Keeping the 
above aspects in view, it can be concluded that QHCM is a better technique to solve the BVPs. 

 
Table 1.  Comparison of   and  norms using CHCM and QHCM for N = 40. 

 
 Linear model 1 Linear model 2 

L
∞  2L  L

∞  2L  
CHCM QHCM CHCM QHCM CHCM QHCM CHCM QHCM 

Pe=1 2.514E-03 5.804E-04 6.722E-04 2.856E-04 1.643E-01 1.642E-02 5.782E-02 4.782E-02 
Pe=10 2.640E-03 2.200E-03 8.872E-04 7.117E-04 2.053E-01 2.072E-02 6.735E-02 5.73E-02 
Pe=40 2.682E-01 7.552E-03 7.974E-02 2.175E-03 1.912E-01 1.684E-02 5.157E-02 4.892E-02 

 

Effect of Peclet Number (Pe) on Exit Solute Concentration 

The mathematical models explained above are simulated using the data of Grähs (1974). The results are derived 
for different values of Pe on exit solute concentration profile for the nonlinear model using QHCM. Figure 3 depicted 
that, for small value of Pe, a longer time is taken by the solution profile to converge and to reach steady-state 
condition. In this state, the bed behaves like a perfect mixing chamber and black liquor instantly starts coming out. 
However, with an increase in Pe, dispersion coefficient is decreasing, and the black liquor takes less time in recovery. 
Although removing all the impurities from the packed bed is a difficult task, however, for Pe >30, liquor can be 
washed out in lesser time. Al- Jabari et al. (1994) supported that efficient washing is attained for Pe between 30 and 
50. The numerical results obtained by the QHCM approaches a steady-state condition when time increases. 

	  

Figure 3. Comparison of exit solute concentration for the number of elements 32. 
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The accuracy of the results can be checked by calculating the relative error. The analytic solution of linear model 
1 is obtained by Grähs (1974). The numerical solution, attained using QHCM, is compared with analytic one in terms 
of relative error. The results of relative error using QHCM and CHCM are graphically shown in Figure 2(a). It is 
observed that the relative error decreases with the increase in the number of elements. It can be seen that for Pe=1, 
the relative error in case of CHCM with 10 elements fluctuates with a maximum magnitude of 1.4×10-1 
(approximately). 

 
Brenner (1962) obtained the analytic solution for linear model 2 with the method of Laplace transform. The 

relative error between the exact and numerical results is plotted in Figure 2(b). Further, it is observed that the relative 
error is nearer to zero in QHCM, whereas, in CHCM, its magnitude is nearly 7 x 10-8. Hence, the supremacy of the 
method over previous work is confirmed with error analysis. 
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Stability Analysis Using  Norms and Comparison with CHCM 

The stability analysis for QHCM using  (Euclidean) and  (maximum) norms for both linear models is 
presented below. The maximum absolute error of QHCM is obtained by using the exact solution given by Grähs 
(1974) for linear model 1 and by Brenner (1962) for linear model 2 for a different range of Peclet number (Pe).  
Thereafter, the comparison is drawn with the technique CHCM used by Mittal et al. (2013) in Table 1. It is observed 
that the error derived for both the norms using CHCM is greater than that by using QHCM in all the cases for both 
models. Also, both norms lie between 0 and 1. Hence, QHCM is found to be more stable than CHCM. Keeping the 
above aspects in view, it can be concluded that QHCM is a better technique to solve the BVPs. 

 
Table 1.  Comparison of   and  norms using CHCM and QHCM for N = 40. 

 
 Linear model 1 Linear model 2 

L
∞  2L  L

∞  2L  
CHCM QHCM CHCM QHCM CHCM QHCM CHCM QHCM 

Pe=1 2.514E-03 5.804E-04 6.722E-04 2.856E-04 1.643E-01 1.642E-02 5.782E-02 4.782E-02 
Pe=10 2.640E-03 2.200E-03 8.872E-04 7.117E-04 2.053E-01 2.072E-02 6.735E-02 5.73E-02 
Pe=40 2.682E-01 7.552E-03 7.974E-02 2.175E-03 1.912E-01 1.684E-02 5.157E-02 4.892E-02 

 

Effect of Peclet Number (Pe) on Exit Solute Concentration 
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 Effect of Bed Efficiency 

During the washing operation, bed efficiency gives the net change in the quantity of black liquor solids. 
Efficiency is determined on the basis of quantity of black liquor solids removed. It is observed from Figure 5 that 
efficiency is increased with the increase in Pe. Hence, the washing operation is influenced by Pe. Also, the efficiency 
is increased with a high Pe in comparison to a small Pe. 

 

           

Figure 5. Effect of Peclet number on bed efficiency. 
 

 

CONCLUSION 

In the present work, the QHCM is proposed to find the numerical solution of linear and nonlinear models of 
pulp washing. The results attained for the linear models using QHCM are found to keep pace with the analytic solution 
given by earlier studies. The relative error as compared to previous techniques (CHCM) is noticed minimum. 
Euclidean and supremum norms are used to establish the stability of the method. Afterwards, this technique is 
employed to solve the nonlinear model related to the washing of the pulp fiber bed. The Pe is found to have a notable 
effect on the concentration of solute at the exit level. The rate of convergence is also obtained that is nearer to 1. The 
industrial parameters such as displacement ratio and bed efficiency are also discussed. It is observed that the axial 
dispersion coefficient considerably affects the concentration profile. Keeping in view all of the mentioned aspects, 
the QHCM is an effective technique and gives more accurate results. Hence, this method can be efficiently used for 
solving linear and nonlinear BVPs.  

 

 

 

Rate of Convergence 

The rate of convergence of the method for the nonlinear model is calculated using the work of Farrell and 
Hegarty (1991). The comparison of the rate of convergence for different values of Pe is presented in Table 2. In all 
the cases, the rate of convergence is found to be nearer to 1. Also, it can be observed that QHCM gives a better rate 
of convergence than CHCM. It proves the efficiency of the method. 

 
Table 2. Comparison of rate of convergence of CHCM and QHCM. 

 
 Pe=40 Pe=100 Pe=300 

N (No. of elements) QHCM CHCM QHCM CHCM QHCM CHCM 

2 1.185371 1.18383 1.01612 0.962791 0.898063 0.721321 

4 1.121715 1.111741 1.337504 1.330525 0.976559 0.971066 

8 1.003269 0.807817 1.114903 1.076677 1.466885 1.463702 

16 0.989565 0.846704 0.985348 0.734532 1.322787 1.302781 
 

Effect of Displacement Ratio (DR) 

The displacement ratio is a common performance parameter used in Industry. It signifies the actual reduction in 
black liquor solids relative to maximum possible reduction. The effect of DR for different values of Pe in the form 
of the breakthrough curve is shown in Figure 4. It is observed that, for a large value of the Pe, more quantity of black 
liquor solid is removed, because dispersion is small in the case when the Pe is large. Due to this, less back mixing 
occurs, and the impurities adsorbed on fiber are removed in large quantity in a short period. When the value of DR 
is 1, the 100% solids are assumed to be removed from the packed bed, although it is not possible in real sense. Thus, 
for the high value of Pe, maximum reduction of dissolved solids is possible and better washing can be achieved. 

 
Figure 4. Effect of Peclet number on Displacement ratio. 
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