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ABSTRACT 

Passengers’ boarding times at bus stops have a great importance to calculate dwell and travel time for scheduling 
process in public transport operations. However, there are not so much observed boarding times data in the actual 
bus transport systems, and it may cause some prediction problems in scheduling process of public transport 
operations. For this reason, accurate estimation of the boarding times will ensure correct calculation of dwell and 
total travel time for bus transport systems. Based on this idea, this study aims to model boarding times of each 
passengers by evaluating different parameters using two different (statistical and optimization analysis) methods. For 
this purpose, a comprehensive data collection process was conducted in total seven different cities of Turkey based 
upon their population. Two new models were developed for boarding time estimation by evaluating various 
parameters using a multiple Ordinary Least Square (OLS) regression and Artificial Bee Colony (ABC) algorithm as 
statistical and optimization methods, respectively. Study results showed that modeling of boarding times by 
considering various parameters is an effective strategy to improve the performance of bus transport systems by using 
developed two models.  

 
Keywords: Boarding time prediction; Statistical analysis; Passenger characteristics; Metaheuristic 

optimization; Public transport. 
 

1. INTRODUCTION 

Bus transport is one of the famous and primary public transport systems in many countries because of its many 
advantages such as easy accessibility and sustainability. Efficiency of public bus transport systems has a great 
importance for planners and researchers to make it more attractive. These systems are still the largest and most 
important parts of the public transport systems in many countries (especially in developing countries). For all these 
reasons, transportation planners, operators, and decision makers conduct numerous studies to improve their service 
quality, efficiency, attractiveness, and sustainability. Especially, planners and operators give a great importance to 
increase public demand and utilization of these systems (Ghasemlou et al., 2012; Tirachini, 2013; Fletcher and El-
Geneidy, 2013; Aydin et al., 2016; El-Geneidy et al., 2017; Stevanovic, 2018). For the planning process, many 
modeling and optimization studies were conducted to improve the performance and efficiency of these systems by 
considering passengers’ perceptions and comments on service performance. Additionally, many other studies were 
conducted to understand passengers’ travel decisions to develop new passenger friendly strategies.  
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According to conducted studies, bus dwell well time was found to be one of the important and effective 
parameters on the total travel time of a public bus (El-Geneidy et al., 2017). Several studies in different countries 
have been conducted to identify the effect of dwell time on the operational performances of public bus transport 
systems and traffic flows since 1970s (e.g., Kraft and Bergen, 1974; Levinson, 1983; Guenthner and Hamat, 1988; 
Levine and Torng, 1994; Genivar, 2011; Chen et al., 2013; El-Geneidy et al., 2017). All these studies have found 
that boarding and alighting times of passengers to a bus have a great effect on dwell times of bus transport systems 
(Dueker et al., 2004; El-Geneidy and Vijayakumar, 2011). According to Levinson (1983)’s study, dwell time usually 
becomes 9–26% of the total travel time for a public bus. He clearly emphasized that dwell time has great importance 
on travel times of bus transport systems. 

 
It was obtained from the previous study results that there are many effective parameters on dwell time such as 

passenger activities (boarding-alighting time) and characteristics (normal, elder, with child, handicapped passengers, 
etc.), bus fare collection types, bus door and floor properties, and bus bay existence. In literature, many studies were 
carried out to determine all these effective factors on dwell time calculation. For example, Fernandez et al. (2010) 
investigated the effects of bus geometric properties (bus door width and floor height) on alighting time, and they 
found that wider bus doors can reduce the average alighting time by almost 40%. It was also found that lower floor 
height only reduces the average alighting time from 1 to 9%. In a different study, Fletcher and El-Geneidy (2013) 
focused on the effect of alternative fare payment methods on dwell time. They found that on-board sale and ticket 
validation can cause an increasing on boarding times. In another study, Tirachini (2013) studied on ages of passengers 
and crowding and/or friction effects among passengers’ boarding time. He determined that when passengers’ 
boarding forms two queues through a single door, this can result in long boarding times. In a similar conducted study, 
Currie et al. (2013) calculated that crowding had a more significant effect on boarding time than the presence of 
entrance steps. Larwin (2012) also found that when crowding is reduced at the front doors of the bus, boarding time 
of a passenger is significantly reduced, by up to 0.5 seconds. Dueker et al. (2004) calculated that low-floor buses 
move 0.13 seconds faster per stop than buses with steps. It was also found from the study that the bicycle and 
wheelchair loadings have a great positive effect on boarding time. In a different study, Fernandez et al. (2010) 
calculated that boarding and alighting times become slower for trunk bus services when there are more than 40 
passengers boarding and less than 15 passengers alighting. In the study, Dueker et al. (2004) used squared terms on 
boarding and alighting times. They calculated that each additional boarding passenger takes 0.04 seconds less, with 
the same figure being 0.03 seconds for each additional passenger alighting. According to the experimental study of 
Fernandez (2011), there are negative and linear relationships between crowding and boarding time. 

 
It can be concluded from the literature that the numbers and mean boarding and/or alighting times can be 

explained as the most important and effective factors on bus dwell time and total travel time. Boarding and/or 
alighting times include many different and important pieces of information in planning and operating process for 
public bus transport systems. For this reason, more passenger based studies need to be conducted in this field to 
estimate these times precisely. Previous studies generally focused on the determination of total boarding and alighting 
times at a bus stop for each boarding or alighting to estimate dwell time and total travel time. Thus, literature review 
clearly shows that there is not any study that investigates and models the boarding time of each passenger by 
considering various effective factors, whereas there are many different factors on boarding behaviors of each 
passenger. Based on this idea, this study aims to model the boarding times of each passengers by evaluating different 
parameters as mentioned in next section for boarding behaviors of each passengers by using statistical analysis and 
optimization methods. 

 

2. DATA COLLECTION AND DESCRIPTIVE STATISTICAL ANALYSIS  

In the scope of the study, a comprehensive data collection process was conducted to relate different parameters 
on boarding times (!") of the passengers. In the study, total seven different cities of Turkey (İstanbul, Ankara, İzmir, 
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Antalya, Samsun, Trabzon, and Gümüşhane) were chosen to analyze and model boarding times (Figure 1). To reflect 
the general bus transport structure of these cities, they were selected as the pilot cities based upon their population 
(Doxiadis, 1968). İstanbul (the most crowded among the examined cities), Ankara, İzmir, and Antalya were chosen 
as high density cities (more than one million), Samsun and Trabzon as mid density cities (less than one million), and 
Gümüşhane (the least crowded among the examined cities) as low density city (less than one hundred thousand).  

 

 
 

Figure 1. Locations of examined seven different cities in Turkey. 
 

All data were collected by using site observations and video recordings from the different bus stops. To reflect 
the general bus transport structure and boarding behaviors, the bus stops were determined randomly from the different 
locations of the cities. The video recordings and site observations were made between 07:00–08:30 hours and 17:00–
18:30 (peak) hours during the weekdays. In addition, the data collection process was repeated in different times in 
winter and summer seasons. Site observations and video camera recordings were not made from so close distance to 
the bus stops. Hence, passengers could not notice the observations and recordings and show normal boarding 
behaviors (Figure 2). 

 

   

Figure 2. Some example visuals from data collection process at bus stops. 
 

Analysis data were obtained by the application of extraction process from the video recording using digital 
counters. After counting process, the following data were obtained from the detailed analysis of site observations and 
recordings:  

According to conducted studies, bus dwell well time was found to be one of the important and effective 
parameters on the total travel time of a public bus (El-Geneidy et al., 2017). Several studies in different countries 
have been conducted to identify the effect of dwell time on the operational performances of public bus transport 
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Fernandez (2011), there are negative and linear relationships between crowding and boarding time. 

 
It can be concluded from the literature that the numbers and mean boarding and/or alighting times can be 

explained as the most important and effective factors on bus dwell time and total travel time. Boarding and/or 
alighting times include many different and important pieces of information in planning and operating process for 
public bus transport systems. For this reason, more passenger based studies need to be conducted in this field to 
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•! Bus type (midibus, single bus, or articulated bus), 
•! Existence of steps to board and alight and number of steps (if available), 
•! Fee payment type (all examined cities use smart card as fare collection method), 
•! Passenger density of the buses (empty, low, mid, and high levels), 
•! Passenger property (normal, elder, with child, and handicapped), 
•! Existence of a bus bay (yes/no), 
•! Bus bay utilization of the bus drivers, 
•! Boarding times (sec.). 
 
From the counts, the random sampling group of the study was calculated as 5030 passengers. Descriptive 

statistics (means, std. dev., and min. and max. values) of numerical variables are summarized in Table 1.  
 

Table 1. Descriptive statistics of observed data. 
 

City 
No 

Examined 
Cities 

Passenger 
Numbers 

(#) 

Boarding Time (sec.) 
Rank 

Number 
($%) 

Minimum 
('()*#) 

Maximum 
('()+,) 

Mean 
('(-) 

Std. 
Deviation 
('(. ) 

1 İstanbul 970 1.05 18.66 2.70 1.92 4 

2 Ankara 901 1.06 16.88 2.41 2.21 2 

3 İzmir 873 1.04 17.10 2.60 1.87 3 

4 Antalya 685 0.98 16.40 2.39 1.75 1 

5 Samsun 639 1.19 17.30 3.31 2.05 6 

6 Trabzon 601 1.08 18.01 2.96 1.91 5 

7 Gümüşhane 361 1.41 17.46 3.65 2.16 7 

 
/0 1 shows the best; /017 shows the worst boarding times among examined cities. 
 

As can be seen in the table, max. and min. mean boarding times (!"-) are observed in Gümüşhane (the least 
crowded) city (!"- = 3.65) and Antalya city (!"- = 2.39), respectively. It can also be seen from the table that 
boarding time differences have the highest value in Ankara (!"9 1= 2.21) and the lowest value in Antalya1(!"9 1=
1.75). Antalya city has lowest mean boarding time (!"-) and std. deviation (!"9) for boarding time values. It means 
that Antalya city has better boarding times than the other six cities, which are located in different regions of Turkey. 
On the other hand, it is clear from the descriptive statistics that there are not big differences between min. and max. 
boarding times of the examined cities. In Table 1, seven different cities were also ranked according to their mean 
boarding times (!"-) from lowest to highest level, and it was found that Antalya city has the best and Gümüşhane 
city has the worst boarding times. The relation among the mean boarding times (!"-) is shown in Figure 3(a), and  
also, the percentages of collected data for 7 cities are given in Figure 3(b).  
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(a) 

 
(b) 

 
Figure 3. The relation among (a) mean boarding times ('(-) and 

 (b) data percentages (%) of collected data for seven cities. 
 

As seen in Figure 3(a), there is good relation among the mean boarding times (!"-) of cities, and there are not 
high and important differences among the mean boarding times. It can be summarized as mean boarding time values 
are closer to each other, and this result makes a common (standard time) mean boarding time utilization idea possible 
in dwell time and travel time analysis for public bus transport system in all over the country. To gain a better 
understanding of mean boarding times (!"-) differences, the obtained data are categorized and summarized, given in 
Table 2. 
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3. RESEARCH METHOD AND ANALYSIS 

3.1. Modeling of Boarding Times Using OLS Regression  

Ordinary Least Squares (OLS) regression is one of the most common prediction and modeling techniques in 
different research areas. The technique is most commonly used to examine and evaluate the relationship between a 
response variable and more than one explanatory variable (Mert, 2016; Aydin et al., 2019). It can be used in single 
and multiple explanatory and categorical variables (Aydin, 2020). In summary, OLS regression method defines the 
relationship between dependent and independent variables as  
given in  

 
! = #$ + #&'& + (

)

&*+
           (1) 

where 
! : Regression model 
#$ : A constant term 
#& : Regression coefficients (, = 1… , 0) 
'& : Independent variables’ column vectors. 
( : A disturbance term. 

 
Multiple OLS regression technique was used to examine and model the relation between boarding times 

(23) of passengers and effective parameters. For this purpose, a total of 5030 passenger boarding times were 
investigated from seven different cities. The coefficients of the regression model are defined as the change in the 
expected value of  ! associated with a one-unit increase in an independent variable, with the other independent 
variables being held constant (Table 3). The disturbances are accepted as being distributed normally with an expected 
value of zero and a common variance (Mert, 2016). Coefficients of the model are estimated by using the least squares 
that minimizes the weights of the sample error sum of squares (Ardahan and Mert, 2013). According to the OLS 
regression model, disturbances of the model should be distributed normally. Previous studies found that if a model 
has big sample size (0>30), it can be accepted to be normally distributed based on the Central Limit Theorem (CLT) 
(Baltagi, 2008). In the study, disturbances of the model were accepted as being distributed normally based on the 
CLT. In the model analysis multicollinearity, heteroscedasticity and model specification error problems were 
investigated by using diagnostic tests to verify that the examined model is meaningful. The dependent and 
independent variables of the OLS regression are given in Table 3. 

 
Table 3. Dependent and independent variables of the regression model. 

 
Dependent Variable 

45 Boarding times of the passengers (sec.) as dependent variable 

Covariates 

67 Number of steps at boarding door 

Dummy Variables 

54_9 (if bus type is articulated:1, otherwise: 0) 

54_: (if bus type is midibus:1, otherwise: 0) 
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;<_9 (if examined city is  Gümüşhane: 1, otherwise: 0) 

;<_: (if examined city is  İzmir: 1, otherwise: 0) 

;<_= (if examined city is  İstanbul: 1, otherwise: 0) 

;<_> (if examined city is  Ankara: 1, otherwise: 0) 

;<_? (if examined city is  Trabzon: 1, otherwise: 0) 

;<_@ (if examined city is  Samsun: 1, otherwise: 0) 

;57 (if bus has a step: 1, otherwise: 0) 

AB_9 (if passenger density at bus is low: 1, otherwise: 0) 

AB_: (if passenger density at bus is mid: 1, otherwise: 0) 

AB_= (if passenger density at bus is high: 1, otherwise: 0) 

AA_9 (if there is a child with passenger: 1, otherwise: 0) 

AA_: (if passenger has an old age: 1, otherwise: 0) 

AA_= (if passenger is handicapped (with wheelchair): 1, otherwise: 0) 

;55 (if there is a bus bay at bus stop: 1, otherwise: 0) 

C55 (if bus driver use bus bay: 1, otherwise: 0) 

 

In the OLS regression, developed boarding time estimation model 1 (BTEM-1) includes qualitative and 
quantitative variables as given in Table 4, and the model is named as Analysis of Covariance (ANCOVA) model. 
The suggested model equation can be written as  

 
23= D$ + D+ × EF_G+ DG ×EF_H+ DH ×IJ_G + DK ×IJ_H + DL ×IJ_K + DM ×IJ_L + DN ×IJ_M  

OOOOO+ DP ×IJ_N + DQ ×I3R+ D+$ ×ST_G+ D++ ×ST_H+ D+G ×ST_K+ D+H ×SU_G+ D+K×SU_H 

    + D+L ×SU_K+ D+M×I33+ D+N×V33 + W+ ×XR + ε                     (2)                                                                     

where  
 

D$ : A constant term of the model,  
D&  : Used dummy variables (, ≠ 0),  
W[  : Coefficients of the determined variables in the model (\ = 1, … . ,2), 
(   : Disturbance term of the model. 

 
To calculate the coefficient of Eq. (2), an OLS estimator was used. Obtained analysis results are summarized in 

Table 4. After controlling multicollinearity, heteroscedasticity, and model specification error problems, disturbances 
are accepted as being distributed normally because of the huge sample size (5030 passengers) (Baltagi, 2008). It was 
seen in Table 4 that the suggested model is statistically significant (_ = 10467.9; SO= 0.000 < 0.01 and R2=0.919). 
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Table 4. Results of predicted model for boarding times (23) of the passengers. 
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10 The modeling of effective parameters on public bus passengers’ boarding time prediction

Model results show that all three (midibus, single bus, or articulated bus) bus types have significant and positive 
effects on boarding times (coeff.>0; S<0.05). On the other hand, only Gümüşhane city’s public bus transport has 
positive effect on boarding times than other cities (coef.=0.724; S<0.05). That is, examined bus type in Gümüşhane 
city (the least crowded) is “Midibus,” and it has higher times caused by the passenger property and step existence in 
boarding doors. The variables, existence of bus step (I3R), and number of steps at boarding door (XR) have also 
positive and significant effects on boarding times (coeff.>0; S<0.05). Furthermore, the coefficients of passenger 
density (ST) are significant and have positive effects on boarding times (coef.=0.584,  S=0.000<0.01 for ST_G; 
coef.=1.388; S=0.001<0.01 for ST_H; coef.=2.553; S=0.024<0.05 for ST_K). Property of the passengers at boarding 
door has also a positive and significant coefficient in the model. It means that having different passenger 
characteristics results in positive significant effects on boarding times caused by the characteristic property of the 
passengers such as a child, the handicapped, or the elderly. It was also seen that examining the other six cities has 
significant and negative effects on boarding times. It can be concluded from the population of the other six cities that 
Gümüşhane city is the smallest city among them, and it has low density city property (less than one hundred 
thousand). Additionally, it was seen from the results that dummy variables, existence of a bus bay (I33), and 
utilization of bus bay by the drivers (V33) have no significant effect on boarding times. This means that they do not 
have great and significance effect on boarding times in the entrance of public buses. 
 

3.2. Modeling of Boarding Times Using ABC Algorithm 

The Artificial Bee Colony (ABC) algorithm is a one of the most used metaheuristic search algorithms for 
optimizing many different real world problems such as transportation, engineering design, scheduling analysis, cost 
optimization, and logistic planning, as well as the optimization method (Naghibi and Delavar, 2016). ABC is recently 
developed by Karaboga in 2005, and it was applied to different problems by many researchers (Karaboga, 2005; 
Karaboga and Basturk, 2008; Karaboga and Akay, 2011; Karaboga et al., 2014; Szeto and Jiang, 2012; Naghibi and 
Delavar, 2016; Sonmez et al., 2017; Yao et al., 2017). ABC algorithm is inspired by the intelligent foraging behavior 
of honey bees, and it is mainly based on foraging behaviors of honey bee swarms in their daily life, and the main 
steps and behaviors of the bees in the algorithm are given below (Figure 4).  

 

 
 

Figure 4. The elements of ABC algorithm. (a) Foraging behavior of bees, (b) schematic representation. 

(a) (b) 
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In this method, all bee types in the population are classified into three different main groups, employed bees (E), 
onlooker bees (O), and scout bees (S), according to their work responsibilities (Karaboga and Basturk, 2008). 
According to this algorithm, the first group (1st group bees) is employed bees. Each employed bee in the colony 
determines the food source, considers its nectar amount, and keeps the location of better sources in their memory. 
Therefore, each food source is determined only by one employed bee. This shows that the number of employed bees 
in the colony algorithm is equal to number of food sources. Employed bees also share this important information with 
other bees in dancing area by dancing when they fly back to hive share. The duration of dance shows the amount of 
nectar in the food area. Onlooker bees (2nd group bees) observe the duration of dance and may decide to fly to the 
food source if they find it worthwhile to visit the food source. If the amount of the food source is high, this important 
information attracts more onlooker bees to the food source by the time the source is exhausted. After the food source 
is exhausted, employed bees of the food source are replaced by scout bees (3rd group bees). The scout bees discover 
new food areas by making randomized searches. Every new food source is evaluated as a possible solution for the 
examined optimization problem. Additionally, the amount of nectar also shows the solution quality, which is 
identified by its fitness value (Karaboga and Basturk, 2008; Aydoğdu et al., 2016). All the algorithm’s four steps are 
summarized with the minimization of the calculated errors. The objective function (minimization) of the optimization 
model can be expressed as given in Eq. (3) (Sultana et al., 2018). 

 
MinimizeOh i = jk & − _k &

Gmn

&*+
, i = [i+, iG,⋯ , i)]       (3) 

where  
 

i  : Weight coefficient vector of the model (design variables), 
rn : Used data number in error analysis, 
jk : Real value, 
_k : Predicted value, 
0 : Number of total weight coefficient in model. 

 
In the scope of the study, Artificial Bee Colony (ABC) method is used as the second method to examine and 

model (BTEM-2) boarding times (23) to a bus in the examined cities. For this purpose, modeling of boarding 
timesO(23) was determined as the aim function of the study. The flow chart of the used ABC algorithm can be 
summarized as given in Figure 5. 

 

 
 

Figure 5. The flow chart of used ABC algorithm. 
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In the modeling study, statistically significant parameters such as Bus Type (EF), Examined City (IJ), Existence 
of Bus Step (I3R), Number of Steps at Boarding Door (XR), Passenger Density inside the Bus (ST), and Passenger 
Property at Boarding Door (SU) were used as the examined parameters and statistically insignificant parameters. 
Existence of a Bus Bay (I33) and Utilization of Bus Bay by the Drivers (V33) were not used. In the analysis, the 
population size and maximum iteration numbers are taken as 50×100 and 10000, respectively. In each algorithm, the 
stopping criteria are to terminate the search process when the maximum number of generations is reached (assumed 
1000 generations) or h i tuv − h i t&) <10-4 where h i  is objective function value. The equation of the 
suggested model in the study by using ABC algorithm can be written as given in Eq. (4). 

 
23= 2.54×EF_++ 2.77 × EF_G+ 1.90×EF_H+0.30 ×IJ_++ 1.12 ×IJ_G -33.24×IJ_H -25 ×IJ_K  

    -13.6 ×IJw
+ 1.04 ×IJx

 - 24.06 ×IJy
 + 0.5 ×I3R-3.73 ×STz

-3.10×ST{
-2.34 ×ST|

 

    -1.23 ×ST_K+ 2.9 ×SU_++ 7 ×SU_G+ 3.10×SU_H+ 15.55 ×SU_K+ (XR + 1)
$.HQ                     (4)  

where 
 
23 : Boarding times of the passengers 
EF_& : Bus Type (, = 1, … . , 0) 
IJ_& : Examined cities (, = 1, … . , 0) 
I3R : Existence of bus step (yes/no) 
ST_& : Passenger density inside the bus (, = 1, … . , 0) 
SU_& : Passenger Property at boarding door (, = 1, … . , 0) 
XR : Number of steps at boarding door. 

 
To measure the performance of the model, descriptive statistical analysis and an error calculation were done by 

using Mean Absolute Percentage Error (MAPE). MAPE was obtained the average of absolute errors divided by actual 
observation values. Calculated descriptive statistics and MAPE (%) results of the suggested model are given in Table 
5. As seen in the table, the developed model’s estimation error (%) equals 9.9<10, and it shows that BTEM-2 can be 
used in the analysis. Furthermore, it can be also seen that the observed (}~F�

) and predicted (}UF�
) mean boarding 

times and std. deviations are close to each other. It means that there is not a great difference between them. Thus, it 
can be concluded that developed model’s boarding time estimation has a good performance. 

 
Table 5. Descriptive statistics and MAPE error for observed and predicted values in BTEM-2. 

 

Boarding 
Time (sec.) 

(45) 

Mean 
(Ä) 

Std. 
Error 

Std. Dev. 
(Å) 

Kurtosis 
Skewnes

s 
Max. Min. 

MAPE 
(%) 

Observed 
(Ç23) 

2.80 0.03 2.00 22.28 4.15 18.66 0.98 

9.92 
Predicted 

(S23) 
2.72 0.03 1.97 23.45 4.30 17.34 1.07 
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The distributions of observed and estimated values, obtained from site observations and developed model 
estimations, respectively, are also shown in Figure 6. As seen in the figure, distribution characteristics of cumulative 
frequency (%) and observed passenger numbers according to boarding times are quite similar for observed and 
predicted values. This result also supports the accuracy of the developed model by using ABC algorithm. 

 
 

 
 
 
 

Figure 6. Distributions of boarding times (a) cum. frequency (%), (b) passenger number (n). 
 

4. RESULTS AND DISCUSSIONS 

The variations on travel times caused by the boarding and alighting behaviors have also a negative effect on 
passengers’ decisions on mode and route choice. The boarding number and time at each bus stop has a great 
importance to calculate dwell and travel time for scheduling process. The current literature only gives several different 
methods that are used to calculate or predict dwell time of buses at bus stops to plan and schedule. However, it is 
known that boarding times at bus stops are one of the most important parameters on the dwell times. A possible 
boarding time modeling studies according to different factors can supply a benefit for planners and researchers. For 
this reason, a comprehensive study was conducted in the study from different cities in order to empirically examine 
and model the impact of various parameters. All effective factors have been determined on boarding behavior using 
OLS Regression (statistical analysis method) and ABC algorithm (optimization method) for modeling. Two new 
boarding time estimation models (BTEM-1 and BTEM-2) were proposed using two different modeling techniques. 

 
The first developed model named as BTEM-1 was found to be significant (_ = 10467.9; SO= 0.000 < 

0.01 and R2=0.919). It was mainly seen from the model results that that boarding times have been negatively 
affected from the city population, and it means that if the city population increases, it probably will have a 
negative effect on boarding times. According to the second proposed model (BTEM-2) results, the 
developed model’s estimation error (%MAPE) was calculated as 9.9<10, and this result shows that BTEM-
2 estimation model can be used in the estimation analysis effectively. Distribution characteristics of cumulative 
frequency (%) and observed passenger numbers also support the accuracy of the developed BTEM-2 model. 

 
All these findings for both models reveal that there is not a great difference between observation and model 

prediction values. Both developed models’ boarding time estimations have a good performance. Overall, the results 
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In the modeling study, statistically significant parameters such as Bus Type (EF), Examined City (IJ), Existence 
of Bus Step (I3R), Number of Steps at Boarding Door (XR), Passenger Density inside the Bus (ST), and Passenger 
Property at Boarding Door (SU) were used as the examined parameters and statistically insignificant parameters. 
Existence of a Bus Bay (I33) and Utilization of Bus Bay by the Drivers (V33) were not used. In the analysis, the 
population size and maximum iteration numbers are taken as 50×100 and 10000, respectively. In each algorithm, the 
stopping criteria are to terminate the search process when the maximum number of generations is reached (assumed 
1000 generations) or h i tuv − h i t&) <10-4 where h i  is objective function value. The equation of the 
suggested model in the study by using ABC algorithm can be written as given in Eq. (4). 
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EF_& : Bus Type (, = 1, … . , 0) 
IJ_& : Examined cities (, = 1, … . , 0) 
I3R : Existence of bus step (yes/no) 
ST_& : Passenger density inside the bus (, = 1, … . , 0) 
SU_& : Passenger Property at boarding door (, = 1, … . , 0) 
XR : Number of steps at boarding door. 

 
To measure the performance of the model, descriptive statistical analysis and an error calculation were done by 

using Mean Absolute Percentage Error (MAPE). MAPE was obtained the average of absolute errors divided by actual 
observation values. Calculated descriptive statistics and MAPE (%) results of the suggested model are given in Table 
5. As seen in the table, the developed model’s estimation error (%) equals 9.9<10, and it shows that BTEM-2 can be 
used in the analysis. Furthermore, it can be also seen that the observed (}~F�

) and predicted (}UF�
) mean boarding 

times and std. deviations are close to each other. It means that there is not a great difference between them. Thus, it 
can be concluded that developed model’s boarding time estimation has a good performance. 

 
Table 5. Descriptive statistics and MAPE error for observed and predicted values in BTEM-2. 
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of the study have demonstrated that modeling of boarding times by considering various parameters is an 
effective strategy to improve bus transport systems performance. Study results may become helpful for 
researcher and public transport planners to have better understanding on determination of different boarding 
times for public bus transport system planning and scheduling. 

 

5. CONCLUSIONS 

In the study, boarding times were modeled, and two new boarding time estimation models (BTEM-1 and 
BTEM-2) were developed using two different modeling techniques. This research mainly reveals the following 
results: 

 
•! Developed boarding time estimation models (BTEM-1 and BTEM-2) were found as effective 

analysis (estimation) methods in bus transport planning and operations. 
•! According to the BTEM-1 model, all bus types (EF), being passenger in Gümüşhane (the least 

crowded among the examined cities) cityO(IJ_G), existence of bus step (I3R), number of steps at 
boarding door (XR), passenger density (ST) inside the bus, and property of the passengers at 
boarding door, have statistically significant and positive effects on boarding times (S<0.05). 

•! BTEM-1 model results show that existence of a bus bay (I33) and utilization of bus bay by the 
drivers (V33) have no significant effect on boarding times of the passengers as dummy variables 
of the model. This means that they do not have great and significance effect on boarding times in 
the entrance of public buses. 

•! BTEM-2 model results reveal that observed (}~F�
) and predicted (}UF�

) mean boarding times and 
std. deviations were found to be so close to each other. This means that BTEM-2 has a good ability 
to fit the relation between used data and study parameters. 

•! Developed model results provide useful information for bus transport system planners and 
operators for improving bus service performance. 

 

6. LIMITATIONS AND FUTURE AIMS 

The modeling methodologies in the study are based on the obtained data from seven different cities of Turkey. 
Modeling methodologies could be applicable to other cities, and the general findings of the study may help for a 
better understanding on relation between boarding time and effective parameters. On the other hand, the 
transferability of the model parameters is limited. Both models may not provide desirable prediction accuracy for 
boarding time (sec.) estimation in other countries’ cities that cannot be evaluated within the scope of the study. 
Especially, different passenger characteristics and bus transport facilities may cause different effects on model 
performances for other applications. Hence, future studies could investigate dwell and boarding times for bus 
transport systems for other countries using various methods with more extended data and parameters. 
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of the study have demonstrated that modeling of boarding times by considering various parameters is an 
effective strategy to improve bus transport systems performance. Study results may become helpful for 
researcher and public transport planners to have better understanding on determination of different boarding 
times for public bus transport system planning and scheduling. 

 

5. CONCLUSIONS 

In the study, boarding times were modeled, and two new boarding time estimation models (BTEM-1 and 
BTEM-2) were developed using two different modeling techniques. This research mainly reveals the following 
results: 

 
•! Developed boarding time estimation models (BTEM-1 and BTEM-2) were found as effective 

analysis (estimation) methods in bus transport planning and operations. 
•! According to the BTEM-1 model, all bus types (EF), being passenger in Gümüşhane (the least 

crowded among the examined cities) cityO(IJ_G), existence of bus step (I3R), number of steps at 
boarding door (XR), passenger density (ST) inside the bus, and property of the passengers at 
boarding door, have statistically significant and positive effects on boarding times (S<0.05). 

•! BTEM-1 model results show that existence of a bus bay (I33) and utilization of bus bay by the 
drivers (V33) have no significant effect on boarding times of the passengers as dummy variables 
of the model. This means that they do not have great and significance effect on boarding times in 
the entrance of public buses. 

•! BTEM-2 model results reveal that observed (}~F�
) and predicted (}UF�

) mean boarding times and 
std. deviations were found to be so close to each other. This means that BTEM-2 has a good ability 
to fit the relation between used data and study parameters. 

•! Developed model results provide useful information for bus transport system planners and 
operators for improving bus service performance. 

 

6. LIMITATIONS AND FUTURE AIMS 

The modeling methodologies in the study are based on the obtained data from seven different cities of Turkey. 
Modeling methodologies could be applicable to other cities, and the general findings of the study may help for a 
better understanding on relation between boarding time and effective parameters. On the other hand, the 
transferability of the model parameters is limited. Both models may not provide desirable prediction accuracy for 
boarding time (sec.) estimation in other countries’ cities that cannot be evaluated within the scope of the study. 
Especially, different passenger characteristics and bus transport facilities may cause different effects on model 
performances for other applications. Hence, future studies could investigate dwell and boarding times for bus 
transport systems for other countries using various methods with more extended data and parameters. 
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