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Comparative analysis using Hungarian dataset

The comparative analysis of the medical data classification methods using the Hungarian dataset is depicted in 
figure 5. Figure 5.a shows the accuracy of methods for various training percentages based on the Hungarian dataset. 
With 70% training, the accuracy of DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN is 0.5, 0.583, 0.625, 
0.5625,0.8383, and 0.8543, respectively. With 80% training, the accuracy of DT, NB, K-NN, SVM, DBN, and the 
proposed CS-DBN is 0.5, 0.5, 0.6875, 0.3125,0.8571, and 0.8638, respectively. Figure 5.b depicts the fitness of the 
methods for various training percentages based on the Hungarian dataset. When the training percentage is 70, the 
fitness of the methods, such as DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN, is 0.4444, 0.583, 0.6528, 
0.5632, 0.8656, and 0.8762, respectively. When the training percentage is 80, the fitness of the methods, such as DT, 
NB, K-NN, SVM, DBN, and the proposed CS-DBN, is 0.4455, 0.5, 0.708, 0.3105, 0.8799, and 0.8881, respectively.

Figure 5.c depicts the sensitivity of the methods for various training percentages based on the Hungarian dataset. 
When the training percentage is 70, the sensitivity of DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN is 
0.5833, 0.8322, 0.5833, 0.5714, 0.9583, and 0.9696, respectively. When the training percentage is 80, the sensitivity 
of DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN is 0.6364, 0.6662, 0.6364, 0.3333, 0.9751, and 0.9819, 
respectively. Figure 5.d depicts the specificity of the methods for various training percentages based on the Hungarian 
dataset. When the training percentage is 70, the specificity of the methods, such as DT, NB, K-NN, SVM, DBN, and 
the proposed CS-DBN, is 0.25, 0.3339, 0.75, 0.5556,0.80, and 0.8046, respectively. When the training percentage is 
80, the specificity of the methods, such as DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN, is 0.2, 0.3338, 0.8, 
0.2857,0.8074, and 0.8186, respectively.

a) b)

c) d)

Figure 4. Analysis using Hungarian dataset based on a) accuracy, b) fitness, c) sensitivity, d) specificity.

Comparative analysis using Switzerland dataset:

The comparative analysis of the medical data classification methods using the Switzerland dataset is depicted 
in figure 6. Figure 6.a shows the accuracy of methods for various training percentages based on the Switzerland 
dataset. With 70% training, the accuracy of DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN is 0.5, 0.583, 
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0.625, 0.6875, 0.8441,and 0.863, respectively. With 80% training, the accuracy of DT, NB, K-NN, SVM, DBN, and 
the proposed CS-DBN is 0.5, 0.5, 0.6875, 0.625, 0.8412, and 0.8623, respectively. Figure 6.b depicts the fitness of 
the methods for various training percentages based on Switzerland dataset. When the training percentage is 70, the 
fitness of the methods, such as DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN, is 0.4444, 0.583, 0.6528, 
0.6895,0.8725, and 0.8858, respectively. When the training percentage is 80, the fitness of the methods, such as DT, 
NB, K-NN, SVM, DBN, and the proposed CS-DBN, is 0.4455, 0.5, 0.708, 0.6306, 0.8726, and 0.8882, respectively.

Figure 6.c depicts the sensitivity of the methods for various training percentages based on Switzerland dataset. 
When the training percentage is 70, the sensitivity of DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN is 
0.5833, 0.8322, 0.5833, 0.7143, 0.9653,and 0.9829, respectively. When the training percentage is 80, the sensitivity 
of DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN is 0.6364, 0.6662, 0.6364, 0.6667, 0.976,and 0.9954, 
respectively. Figure 6.d depicts the specificity of the methods for various training percentages based on Switzerland 
dataset. When the training percentage is 70, the specificity of the methods, such as DT, NB, K-NN, SVM, DBN, and 
the proposed CS-DBN, is 0.25, 0.3339, 0.75, 0.6667, 0.8023, and 0.8115, respectively. When the training percentage 
is 80, the specificity of the methods, such as DT, NB, K-NN, SVM, DBN, and the proposed CS-DBN, is 0.2, 0.3338, 
0.8, 0.6, 0.8005, and 0.8069, respectively.

a) b)

c) d)

Figure 5. Analysis using Switzerland dataset based on a) accuracy, b) fitness, c) sensitivity, d) specificity.

Analysis based on the computational time

The analysis of the proposed method with the existing methods in terms of computational time is provided in this 
section. Table 2 depicts the computational time of the proposed method and the existing methods, such as DT, NB, 
K-NN, SVM, and DBN, in which the proposed system has less computation time of 6 sec.
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Table 2. Computational time.

Methods DT NB K-NN SVM DBN Proposed
CS-DBN

Time (Sec) 13 11.5 10.4 8 7.5 6

CONCLUSION 
Preserving the privacy of medical data in the ontology-based systems is a critical need, especially in the case when 

the system is used by more numbers of users with various privileges and is distributed over applications. Thus, it is 
necessary to take steps for the preservation of the medical data of the patients. This paper aims to preserve confidential 
medical data with the introduction of a medical data classification method. The proposed CS-DBN method works 
based on three main steps, namely, generation of privacy preserved data, construction of ontology, and classification. 
The deep convolutional kernel approach is utilized for the provision of data confidentiality with the generation of 
optimal coefficients. The ontology is developed with the terms related to cardiac heart disease for classification. The 
classification is carried out using deep belief network (DBN) that is trained by crow search algorithm (CSA). The 
analysis of CS-DBN is performed in terms of the metrics, namely, fitness, accuracy, sensitivity, and specificity, and 
it produces the higher fitness, accuracy, sensitivity, and specificity of 0.9007, 0.8842, 1, and 0.8408, respectively. In 
future, the data classification will be based on any hybrid optimizations, and the analysis will be done using more 
medical databases.
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