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ABSTRACT
Mobile Cloud computing is a recognized computing platform and is being considered as a business model due to 

its potential growth in offering required services to the users. However, it poses a number of challenges, among which 
the consumption of energy in the data centers is the key issue. Hence, an energy aware task scheduling technique, 
called Autoregressive Dragonfly Optimization-based Multiobjective Task Scheduling (ADO-MTS), is designed that 
schedules the tasks to the suitable cloud resources. The scheduling of the tasks is either in the public cloud or Mobile 
Cloud (MC) such that the utilization of energy is reduced. Accordingly, an optimization algorithm, Autoregressive 
Dragonfly Optimization (ADO), is developed combining Conditional Autoregressive Value at Risk (CAViaR) with 
Dragonfly Algorithm (DA). Moreover, a multiobjective model concerning energy consumption, Makespan, and 
resource utilization is designed for the optimal allocation of resources to the tasks. Three measures, that is, resource 
utilization, Makespan, and energy, are used to evaluate the performance of the proposed ADO-MTS technique. The 
results show that the ADO-MTS technique has provided high performance by obtaining the maximum resource 
utilization of 0.5795, minimum Makespanof 6.22, and minimum energy consumption of 0.092, respectively.  

Keywords: Cloud computing; Task scheduling; MC; CAViaR; DA; Makespan. 

INTRODUCTION
Mobile Cloud Computing (MCC) is a new business approach that extends cloud computing by providing cloud 

resources to the mobile users and helps them in saving device end resources (Lin et al. 2014). Mobile cloud applications 
transmit both the data and data processing away from mobile devices and into the cloud, conserving local storage, 
battery life, and processing power. Cloud computing provides infrastructure, applications, and platforms as web 
services via three service delivery models, namely, Infrastructure-as-a-Service (IaaS), Software-as-a-Service (SaaS), 
and Platform-as-a-Service (PaaS) (Wang et al. 2016 ; Hongyou et al. 2013). In MCC, there involves two kinds of 
architectures, namely, remote cloud and local mobile cloud. The remote cloud may be a public cloud, private cloud, or 
hybrid cloud, whereas the local mobile cloud is created by nearby mobile devices in the vicinity. 

The compactness and the portability of mobile devices like smart-phones, tablets, and laptops make them a widely 
used computing platform. Due to the increased usage and energy density of batteries, the durability of the battery 
for the mobile devices becomes shorter and results in a power crisis. MCC integrates mobile computing and cloud 
computing in order to increase the capabilities of mobile devices using offloading techniques. MCC intends to improve 
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the performance and save energy of the mobile devices by (i) selective offloading of processes of an application, such 
as object recognition, natural language processing, and video/image editing, into the cloud and (ii) careful scheduling 
of tasks to be executed in the mobile device as well as in the cloud,keeping the task-precedence requirements (Chen, 
et al. 2017).

The main feature of cloud computing as recognized by the researchers is the provisioning of a shared pool of 
resources, such as storage, data processing, network, and applications at minimal cost and in Pay-As-You-Go manner. 
If the jobs are not scheduled correctly, performance is reduced because the cloud processes a large amount of data. 
Thus, the scheduling mechanism plays an important role in cloud computing. A scheduling algorithm is utilized to plan 
the task with greatest evaluated gain or benefit and execute the task.To develop an effective scheduling algorithm, it is 
necessary to understand the various problems associated with different scheduling methodologies and the limitations 
to overcome. 

An important constraint in scheduling the dependent tasks is the energy consumption. Conventional techniques 
of task scheduling for shared platforms like clusters, grids, and cloudsare concerned with minimizing the time 
of execution irrespective of the energy consumption. The execution time and the energy consumption may cause 
larger variations during the runtime, due to physical faults, process variability, and the changes in the voltage or the 
frequency (Li et al., 2017; Juarez et al., 2016). Therefore, the scheduling process in cloud computing is considered 
as a challenge, since it requires a useful considerate of characteristics of resources and various energy factors. The 
scheduling techniques (Ali et al., 2017; Liu et al., 2017) available concentrate more on allocating the resources fairly, 
but in reality, various resource-based applications operating on the Virtual Machines (VMs) also pose considerable 
effect on the performance of the system and energy consumption. Hence, it is important to consider these aspects 
during task scheduling. To schedule the resources optimized and effectively, a scheduling scheme must consider 
multiple parameters like CPU, bandwidth, memory, etc., of a data center for making the scheduling decisions (Duan 
et al., 2017; Ding et al., 2015). 

Accordingly, this paper designs an Autoregressive Dragonfly Optimization technique for the task scheduling in 
either a public cloud or MC with energy awareness. The algorithm considers three objectives, energy, Makespan, and 
resource utilization, which are optimized. The energy estimation in the cloud environment is formulated based on 
application and dynamic executions, while that in MC is calculated based on the frequency of operation of the cores 
during task scheduling. Makespan indicates the time of execution of each task in the cloud. The ADO-MTS technique 
is designed to allocate the tasks in each resource in the cloud, while the ADO algorithm is designed by combining 
CAViaR approach with DA for the optimal scheduling. The performance of the proposed method is analyzed using 
three measures, such as resource utilization, Makespan, and energy. From the results, it is exposed that the proposed 
ADO-MTS technique has provided the high performance by obtaining the maximum resource utilization of 0.5795, 
minimum Makespanof 6.22, and minimum energy consumption of 0.092, respectively.  

The contributions of the proposed ADO-MTS technique for the task scheduling in the cloud are as follows:

Introduction•  of ADO algorithm by integrating the concept of CAViaR into DA, for the optimal scheduling of tasks 
to the particular resources in the cloud such that the energy consumption and the execution time are at minimum, 
while the resource utilization is maximized.

Designing•  a multiobjective model based on three objectives, such as energy, Makespan, and resource utilization, 
for the effective selection of cloud resources, to assign the tasks.   

The rest of the paper is organized as follows: Section 2 presents various existing methods employed for task 
scheduling in the cloud together with problem formulation. In section 3, the cloud setup and the energy consumption 
model are presented. The proposed ADO-MTS technique developed using ADO algorithm is described in section 4 
with diagrammatic representations. The results of the ADO-MTS technique are demonstrated using a comparative 
analysis with the performance discussion in section 5, and section 6 concludes the paper.
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RELATED WORK
This section presents the review of existing task scheduling works with their contribution, merits, and demerits.

Xue Lin et al. (2015) investigated the task scheduling problems in MC and proposed an algorithm based on minimal-
delay, which reduced the energy consumption by migrating the tasks from the local cores to the cloud. The algorithm 
utilized Dynamic Voltage and Frequency Scaling (DVFS) technique to reduce the further utilization of energy. For 
the migration of tasks, a linear-time rescheduling algorithm was developed. However, the algorithm has a large 
computational complexity of order O (N3K).

On the basis of Dynamic Voltage Scaling (DVS), Yibin Li et al. (2017) had developed a novel Energy-aware 
Dynamic Task Scheduling (EDTS) algorithm to reduce the utility of total energy for smart-phones such that the 
constraints, time, and probability were satisfied. The consumption of energy for Cyber Physical System (CPS) could be 
reduced using EDTS than in critical path scheduling and parallelism-based scheduling methods. The major drawback 
of EDTS is that it is not applicable for Android devices.

Ting Shi et al. (2016) had designed the local mobile clouds using mobile devices in proximity to develop their 
mathematical models, after which the scheduling problem was formulated. Then, the resource discovery process and 
a scheduling algorithm, called adaptive probabilistic scheduler, were designed to schedule the tasks to the nearby 
mobile devices. Even though the approach is scalable and flexible, task rescheduling is impossible.

An Energy-aware Resource Allocation method, called EnReal, was developed by Xiaolong Xu et al. (2016), to 
address the energy constraint issue. The authors had presented an energy consumption model in the cloud environment, 
designing a resource allocation algorithm with energy awareness. It reduces the consumption of energy in the cloud, 
but is not appropriate for real world applications, as it fails to consider network bandwidth and storage.

For energy conservation, Xiaomin Zhu et al. (2014) had presented a rolling-horizon scheduling technique with a 
scheduling technique based on energy awareness, known as EARH, for real-time applications in virtualized clouds. 
The technique utilized an energy consumption model depending on the task. Moreover, two methods regarding scaling 
up and scaling down of resources were developed to improve the trade-off between schedulability of the task and 
energy conservation. EARH also suffers from the same limitation most of the existing systems face; i.e., it is not 
suitable for real-time cloud platforms.

Tarandeep Kaur and Inderveer Chana (2016) analyzed the significance of multicore processors, consolidation, and 
virtualization methods to attain energy efficiency in the cloud by designing a model, named Green Cloud Scheduling 
Model (GCSM). GCSM utilized the heterogeneity of tasks and resources through a scheduler unit that could reserve 
the constrained tasks based on the nodal energy. By the dynamic decisions made, GCSM ensures the performance, 
reaching the Quality-of-Service (QoS) required. However, GCSM fails to consider the deadline constraints and the 
energy expenditure issues.

A scheduling scheme, called PreAntPolicy, was designed by Hancong Duan et al. (2017) using a prediction 
model depending on fractal mathematics and Ant Colony Algorithm (ACA)-based scheduler. Scheduling was done 
based on the load trend prediction model so that the scheduler could allocate the resources with minimized energy 
consumption satisfying the QoS. The reduced scheduling efficacy due to a large number of VMs is the drawback of 
the PreAntPolicy.

Seyedmehdi Hosseinimotlagh et al. (2015) presented a VM scheduling algorithm based on the utilization level 
for the optimal energy utility such that the QoS was met. By regulating the scheduled resources of VMs on a host, it 
could reach the optimal energy level. Only if the CPU utilization of a host is greater than the optimal threshold, the 
performance of the algorithm has slighter enhancement.

Yonghua Xiong et al. (Xiong et al., 2019)  analyzed the task scheduling problem for cloud data-centers (CDCs) 
and established a mathematical model of the scheduling of two-stage tasks. The Johnson’s rule was combined 
with the genetic algorithm to create a Johnson’s-rule-based genetic algorithm (JRGA), which takes into account 
the characteristics of multiprocessor scheduling in CDCs. A comparison of the JRGA with two other scheduling 
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algorithms shows that the JRGA is better than the conventional LS algorithm in all cases and that it is better than the 
ILS algorithm when the number of machines is small. However, more efforts are still needed to further this study, and 
they include considering the scheduling with multiple heterogeneous machines and developing scheduling algorithm 
with lower complexity.

Pei Yun Zhang and Meng Chu Zhou (Zhang and Zhou, 2018) proposed a method based on a two-stage strategy to 
maximize task scheduling performance and minimize unreasonable task allocation in clouds. At the first stage, a job 
classifier motivated by a Bayes classifier’s design principle is utilized to classify tasks based on historical scheduling 
data. A certain number of virtual machines (VMs) of different types are accordingly created. This can save time 
of creating VMs during task scheduling. At the second stage, tasks are matched with concrete VMs dynamically. 
Dynamic task scheduling algorithms are accordingly proposed. They minimize the waiting time of VMs to schedule 
tasks, thus minimizing the cost to be paid by users who utilize VMs. The readily deployable algorithms are designed 
and illustrated to improve cloud task scheduling and execution results in comparison with those using traditional 
methods. However, the energy consumption of this method is high.

Summary
From the related work discussed above, the following problems of task scheduling are identified. These problems 

are considered as the challenges and are addressed by the proposed method. 

Overloading of the cloud servers may lead to large consumption of power, and execution inefficiency. On the • 
contrary, they must not be underloaded, and in this case also energy consumption increases. The problem is critical 
with the evolution of big data processing in the cloud due to the necessity of using the cloud infrastructure in an 
energy-efficient way (Ismaila & Fardoun, 2016).

Since the scheduling algorithms in the cloud technology need a useful study regarding the characteristics of the • 
resources, considering several cost factors of energy, designing such algorithms is a challenge (Duan et al., 2017).

While processing the tasks scheduled, large variations in the execution time and the consumption of energy may • 
occur, because of inconsistency in the process, physical faults, voltage/frequency variations, and so on (Li et al., 
2017).

For the effective reservation of computing resources, a scheduling technique has to consider the load in the data • 
center, which most of the existing systems ignore, to make the decisions concerning scheduling (Duan et al., 
2017). 

The major problems with the energy aware scheduling methods (Lin•  et al., 2015; Li et al., 2017; Shi et al., 
2016) are that they have considered only the energy as the important parameter, but it is necessary to include the 
Makespan for the efficient scheduling.

In Xu•  et al. (2016), a task scheduling method was developed with well-defined energy model by considering the 
dynamic and application oriented parameters. The algorithm did not consider the optimization model, which is 
better for efficient energy aware scheduling even if multiple objectives are included.

MOBILE CLOUD SYSTEM MODEL
The cloud system model designed for the task scheduling process is depicted in Figure 1. On the submission of 

a user request, the task is accepted, and the service is provided to the user following a scheduling algorithm. Let 

 represent the tasks that may be executed in parallel. The allocation of tasks can be in either the 
public cloud or mobile cloud. The public cloud is comprised of a number of Physical Machines (PMs), represented 
as . Each physical machine is comprised of ‘p’ VMs, 

y (
, such that the 

value of p is different for different PMs. PMs consist of four parameters, baseline energy consumption rate, denoted 
as α, internal communication bandwidth (β), internal communication energy ( ), and energy consumption at sleep 
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mode (δ). The value of these parameters is fixed in the limit [0,1]. Similarly, the task scheduling in VM is based on 
active energy consumption (μ a), baseline energy consumption (μb), speed in Million Instructions Per Second (MIPS), 
processor (P), and memory (M). The sending rate SR, which is the rate at which the task is sent to the cloud through the 
channel, is assigned a value 0.5. Network bandwidth, represented as βext , and energy consumption rate (λ) are the other 
parameters considered during the communication between a PM and a core, for the energy awareness during the task 
scheduling process. Meanwhile, a mobile device in MC consists of a number of cores as . Every 
core can be operated at different frequency scaling factors, denoted as s, whose value ranges from 0 to 1 and a constant 
γ that ranges between 2 and 3. Hence, the total number of resources in the cloud, where the tasks are scheduled, is 
z = mp + q. The process of scheduling follows a dependency graph, and the scheduling process is executed at various 
levels. 

Figure 1. MobileCloud System model for task scheduling.

Energy Consumption Model  
The proposed ADO-MTS technique follows two energy models, one during the task scheduling in the public cloud 

and the other for that in MC. The consumption of energy during the execution of a task in the cloud resource is to be 
at minimum for the energy aware task scheduling process. Thus, the energy consumed during the scheduling process 
is given as

                                           (1)

where EPublic and E mobile represent the energy consumption in the public cloud and the MC, respectively.  

Energy model in the public cloud
The energy consumption in the public cloud is modelled (Xu et al., 2016) regarding two classifications, application 

and dynamic execution. The requirements of resources for application execution depend on the VMs in the physical 
servers. The energy consumption for dynamic execution is computed based on the PMs in idle and switch operation 
modes. Thus, the energy consumption in the cloud is given by
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                               (2)

where EP(App) is the energy consumed for application execution, EP(Dyn) is the energy consumed for dynamic 
executions, NP(App) is the normalized factor associated with application execution, and NP(Dyn) is the normalized factor 
associated with dynamic execution. The estimation of energy for the application execution is based on the following 
parameters: baseline energy consumption by PMs, energy consumption by VMs for execution, energy consumed by 
idle VMs, internal communication energy, and external communication energy. Hence, the energy (Xu et al., 2016) 
is computed as

               (3)

where  is the baseline energy consumption in PM,  is the energy consumed by VMs for execution,  is 
the energy consumed by idle VMs, Eint is the internal communication energy, and Eext is the external communication 
energy.  is computed based on the active time, denoted as tact, of each PM and α, while  depends on the 
execution time of each VM in the particular PM and μ a.  is computed based on μb and the idle time, tidle, which is 
calculated as follows:

                                                         (4)

where S is the Makespan, and tact is the active time, which will be discussed in section 4.1.1. The estimation 
of the internal communication energy depends on  and the ratio of the data transmitted between two PMs to the 
bandwidth β. Similarly, the external communication energy, Eext, is computed based on those parameters, i.e., λ and 
βext, associated with the communication between the PM and the core. The formulation of these parameters is similar 
to that presented in Xu et al.(2016).

The computation of energy for the dynamic execution follows the energy model in Xu et al.(2016), which is based 
on the two modes, idle and switch, as represented by the following equation:

                                                                       (5)

where Eidle is the energy consumed when the PM is idle by multiplying the idle time t idle of each VM with the 
corresponding rate of energy consumption, and Eswitch is the energy utilized during switch operation, which is computed 
based on the energy consumption rate at sleep mode, represented as δ, baseline energy consumption in the PM (α), and 
active  energy consumption in the VM (μ a).

Energy model in the MC
This subsection explains the energy utility model (Lin et al., 2015) in the MC environment during the task 

scheduling process. For the execution of a task in the MC, it does not utilize the energy of the mobile device. Hence, 
the energy consumed during the execution of a task Ti in the jth core, Cj , is given by

              (6)

where pj is the average power, n is the number of tasks,  is the execution time of ith task in Cj , and Nmobile is the 
normalized factor associated with MC. 

The average power consumed by the core can be measured taking the operating frequency as
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                                                         (7)

where rj is a constant whose value is in the interval [2,3] and Fj is the jth core frequency, given by

                                                                       (8)

where Fmax is the maximum operating frequency.

PROPOSED METHODOLOGY
This section explains the proposed task scheduling technique using ADO algorithm in the cloud computing 

environment, either public cloud or MC. To schedule the tasks in the cloud optimally, ADO algorithm is designed 
by combining CAViaR approach (Engle & Manganelli, 1999) and DA. Multiobjectives, such as energy utilization, 
Makespan, and resource utilization, are considered in designing the fitness function, for the proper selection of 
resources in the cloud to schedule the tasks. Hence, a multiobjective model is designed with the objective of reducing 
the energy, and the Makespan, but with increasing the resource utilization. The energy utility is computed in both 
cloud environments based on the resource where the task is scheduled. 

ADO-MTS Technique
In this section, the ADO-MTS technique proposed for task scheduling in the cloud is illustrated. The tasks requested 

by the users to the cloud through the internet are handled by the task buffer and the task manager. The cloud includes 
a number of resources that consume sufficient energy. The information regarding the energy, Makespan, and resource 
utilization is collected by the task manager. For the feasible scheduling of tasks to the cloud resources, an efficient task 
scheduling algorithm is required. Hence, the scheduling algorithm, ADO, is developed utilizing the multiobjective 
model in the fitness function. Thereby, the tasks are assigned to the appropriate resources in the cloud based on 
the requirement according to the energy consumption, Makespan, and resource utilization. As energy is the major 
objective considered in the proposed ADO-MTS technique, the consumption of energy in both cloud environments 
is combined to formulate an energy model, discussed in mobile cloud system model.  Based on the scheduling done, 
the tasks are executed using the VMs in the public cloud and the heterogeneous cores in the MC in parallel. The block 
diagram of the proposed ADO-MTS technique is pictured out in Figure 2.

Figure 2. Block diagram of the proposed ADO-MTS technique.
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Multiobjective Fitness Model
One of the challenges in considering multiobjective model is the complexity in satisfying all the objectives 

considered. The proposed technique developed for task scheduling considers three major objectives, that is, energy, 
Makespan, and resource utilization. The requirement of any resource in the cloud is i) minimizing the consumption 
of energy, ii) minimizing the Makespan, and iii) enhancing the resource utilization. Based on the three considered 
objectives, the fitness function can be formulated as follows:

                                                                      (9)

where S is the Makespan, N S is the normalized factor associated with Makespan, R is the resource utilization, and  
ET is the total energy consumed. The computation of the energy is based on the energy consumption model.   

Makespan: The second objective, Makespan, is the time consumed by the resources for the completion of all the 
tasks. Scheduling the tasks to different cloud resources is usually to reduce the Makespan. Hence, the Makespan is 
computed based on the execution time as

                                                                    (10)

where n is the number of tasks, N is the number of parallel executions possible, and  is the execution time. Since 
the execution time of a task differs for the public cloud and the MC, it is represented as

               (11)

where  is the execution time in the public cloud during the execution of the task Ti ,  is the execution time in the 
MC, and  is the number of resources available. The estimation of execution time requires Task Assignment Matrix 
(TAM), which is a matrix constructed according to the assignment of the task in a resource. Hence, the execution time 
in the public cloud is computed in accordance with TAM as

           (12)

where  is the length of the data in the ith task, I represents MIPS, P is the processor, M is the memory, TAMi,z 
represents the TAM of ith task that takes a value 1 for the task assigned in z, and C1, C2 , and C3 , are the constants taking 
the maximum of I, P, and M, respectively. 

               (13)

where p is the number of VMs. Based on the execution time of each task in the scheduled resources, Task Time 
Matrix (TTM) is built.

             (14)
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where TAMi,z  represents the TAM of ith task that takes a value 1 for the task assigned in z, and ei is the execution 
time in the clouds. Accordingly, the active time, which is the time at which the resource is involved actively in the 
execution of a task, is computed based on the TTM of ith task in the resources as

               (15)

where n is the number of tasks. When the VM is idle, it consumes only the baseline energy.

Meanwhile, the execution time of a task in the MC is computed as the ratio of a decreasing function to the 
frequency scaling as

              (16)

where  is the decreasing function of the maximum frequency, sj is the scaling factor, and  is the data 
length.

Resource Utilization: The utilization of resources in the cloud is measured according to the MIPS, processors, 
and memory used. Also, it depends on the TTM that computes the execution time of every task in the allocated 
resources.

         (17)

where q is the number of cores, s is the frequency scaling, Iz is the MIPS, Pz is the processor, Mz is the memory, and 
c1, c2 and c3 take the value as expressed in equation (6). The fitness is preferred to be at minimum for the solution to be 
the best, as the solution must have minimized energy consumption, minimized Makespan, and maximum utilization 
of resources.  

Autoregressive Dragonfly Optimization for Optimal Task Scheduling
The proposed ADO algorithm developed for the optimal selection of resources to schedule the tasks is described 

in this section. By the incorporation of CAViaR approach in DA (Mirjalili, 2016), ADO algorithm is proposed, where 
the optimal resource to assign a particular task is determined based on a multiobjective fitness function. DA is an 
optimization technique developed according to the swarming behavior of dragonflies. The reason behind selecting 
DA in the proposed technique is due to its ability in solving multiobjective problems. Even though DA has better 
convergence to the global optimum, a further improvement in the algorithm can be attained using the CAViaR model. 
The following sections explain the proposed ADO algorithm in detail.

Solution Representation
The solution representation provides the simplest view of the technique representing its solution. In the proposed 

technique, the solution is determined using the proposed ADO algorithm. Since the objective of ADO-MTS is task 
scheduling, the solution is the resource in the cloud to be selected optimally to schedule a particular task. The order 
of the task to be executed in the cloud resource is represented by the index. Hence, the solution is a vector having 
dimensions equal to the number of tasks and is represented as 1× n. Initially, the solutions are generated in random, 
and the suitable one from the population n is selected based on the fitness function that considers multiple objectives 
for the optimal selection of the cloud resource. Consider the dependency graph, based on which the task scheduling is 
performed. Let the number of tasks to be scheduled be four, denoted as T1, T2, T3 , and T4 . Depending on the priority of 
the task, at level 1 the task T1 is executed in a cloud resource, while the tasks T2 and T4 are performed at level 2. Finally, 
at the third level, T3 is performed. Hence, the order of task execution is as follows: T1 , T2 and T4, T3. The scheduling 
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of tasks to the resources is given in the solution representation depicted in figure 3. Let the number of VMs available 
in the public cloud be three, , , and , and the cores in the MC be two, C1 and C2. Hence, the total number of 
resources is five, i.e., z = 5. Each element in the solution vector corresponds to a cloud resource. Hence, as shown in 
Figure 3, T1 is scheduled in the resource numbere 2, i.e., , T2 in C1 (4), T4 in  (1), and T3 in C2 (5).

Figure 3. Solution representation of ADO-MTS technique.

Autoregressive Dragonfly Optimization Algorithm
The proposed ADO algorithm designed by incorporating CAViaR model into DA is demonstrated in this section. 

Determining how the dragonflies interact in navigation, food search, and enemy avoidance, two phases, namely, 
exploitation and exploration, are designed in DA (Mirjalili, 2016). The position update process of DA is modified 
using CAViaR model to improve the performance of the algorithm by selecting the optimal solution. The algorithmic 
steps are as follows.

I) Population Initialization

The foremost step is to initialize the population of dragonflies in random as

             (18)

where Zl is the lth position of the solution in the population and K is the dimension of the population. The size of 
the population is assumed 10, i.e., K = 10. In addition, the step vector, , is also initialized.

II. Fitness Evaluation

After the initialization of the population, the fitness of each solution is computed using the fitness formulated in 
equation (9). Every solution updates its position to form the best solution in each consecutive iteration based on its 
fitness. 

III. Defining swarm behavior based on three principles

The algorithm follows three principles, that is, separation, alignment, and cohesion, to define the swarm behavior 
as follows.

i) Separation: It is defined as “the static collision avoidance of the individuals from other individuals in the 
neighborhood”.

                                                       (19)
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where Z is the position of the individual at the current iteration, and Zr is the position of the rth individual in the 
neighborhood Q.

ii) Alignment: The alignment is defined as “velocity matching of individuals to that of other individuals in 
neighborhood” and is computed as

                                                                    (20)

where Lr is the velocity of rth individual in the neighborhood.

iii) Cohesion: Cohesion is defined as “the tendency of individuals towards the centre of mass of the 
neighborhood”,

                                                       (21)

where Z and Zr are the positions of the current and the rth individuals and Q is the number of neighborhoods.

IV. Autoregressive based position update 

The position update process depends on two more factors, other than the three principles. The two factors are 
attraction to a food source, represented as Bl , and distraction from an enemy, Dl, defined as follows:

                                                                     (22)

                                                                     (23)

where Z * represents the best position of the individual and Z - represents the worst position. For the position update, 
step vector that indicates the direction at which the dragonflies move is computed.

           (24)

where t represents the current iteration, a is the weight related to separation, Al is the separation of lth individual,  
g is the weight related to alignment, Gl is the alignment of lth individual, h is the weight related to cohesion, Hl is the 
cohesion of l th individual, b is the food factor, Bl is the food source of l th individual, d is the enemy factor, Dl represents 
the distraction, and W is the weight of inertia. From equation (24), the position of the individuals can be updated as

                           (25)

where ΔZ(t + 1) is the step vector at iteration t + 1 and Z(t) is the position of the individual at the current iteration. 
At this instance, CAViaR approach that indicates the evolution of the quantile utilizing an autoregressive method is 
adopted. In CAViaR, the unknown parameters are computed by reducing the regression quantiles. The ability in adapting 
to any environment makes CAViaR model applicable in the optimization algorithm to enhance the performance of the 
algorithm. The model has a general representation as follows:

         (26)

where ε is a constant, representing a vector of unknown parameters, f (Z(t)) is the fitness of the solution at current 
iteration, and f (Z(t - 1)) is the fitness of the solution at iteration t - 1. Subtracting Z(t) at both sides of equation (26), 
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          (27)

Substituting equation (25), in the above equation, the position update of ADO algorithm can be derived as 
follows:

     (28)

       (29)

    (30)

where Z(t) is the position of the individual at current iteration, Z(t - 1) is the position of the individual at 
(t - 1)th iteration, Z(t + 1) is the position of the individual at iteration t + 1, and ΔZ(t + 1) is the step vector. For 
the improvement of randomness, exploration, and so on, the algorithm utilizes Levy flight, as given in equation 
(31), to expand the search space. In this case, the position is updated as

                                                        (31)

where u represents the size of the position vectors, and the levy flight is computed as

                                                        (32)

where v1, v2 are two numbers that take a value between 0 and 1, ρ = 1.5, and σ is given by

                                         (33)

where Г(u) = (u - 1).

V. Finding the best solution

Once the positions of the individuals are updated, the fitness of the individuals is computed. The solution that has 
the minimum fitness is determined as the best solution. 

VI. Termination

The steps from II to V are repeated until the algorithm reaches the termination criterion. Here, the criterion is to 
terminate the procedure when the iteration t exceeds the maximum iteration, tmax, before which the best solution is 
determined. 

The algorithmic procedure is described using the pseudocode given in Table 1.
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Table 1. Pseudocode of ADO Algorithm.

Proposed ADO Algorithm

1 Input: Random population 

2 Output: Best position Z *

3 Parameters: Separation A, Alignment G, Cohesion H, Food factor B, and Position of enemy D 

4 Begin

5           Initialize the population and the step vectors

6           for (t < tmax)

7                      for each solution in the population 

8                                 Compute the fitness using equation (9)          

9 Update A, G, H, B, and D using equations (19), (20), (21), (22), and (23).

10                                 if a dragonfly has atleast one neighbor 

11                                           Update the position using equation (30)

12                                 else          

13                                           Update the position using equation (31)

14                                 end if          

15  t = t + 1

16                      end for 

17                      Return Z * 

18           end for

19 Terminate

RESULTS AND DISCUSSION
The results of the proposed ADO-MTS technique developed for task scheduling in both the cloud computing 

environments (public cloud and MCC) are demonstrated in this section. The performance of the proposed technique 
is compared with existing techniques for the evaluation.

For the performance comparison, three existing techniques, that is, i) EnReal (Xu et al., 2016), ii) Xue Lin et al. 
(Lin et al., 2015), and iii) DA-TS (Applied DA (Mirjalili, 2016) in the proposed technique instead of the proposed 
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ADO algorithm in the ADO-MTS technique), are employed. The technique presented in Lin et al.(2015) is a task 
scheduling method in MC, where DVFS technique is utilized for the minimization of the energy utility. Another 
method employed for the comparison is EnReal, which is also designed to solve the problems related to energy 
constraints. The performance of these three techniques is compared with that of the proposed technique using the 
evaluation metrics. 

The measures used for the evaluation of the performance of the comparative techniques are resource utilization, 
Makespan, and energy. Makespan and resource utilization are defined and formulated in the fitness model. The 
conservation of energy during the execution of tasks in the cloud is given in equation (1).

Experimental Setup
The ADO-MTS technique is experimented in a system operated using Windows 10 with 64-bit OS and 2 GB 

memory. The software used for the implementation of the task scheduling technique is JAVA with CloudSimtool. For 
the experimentation, four setups are formed based on different numbers of PMs, VMs, and cores, as given below.

Setup 1: The first setup assumes two PMs, and ten VMs in the public cloud and two cores in the MC, for the 
experimentation.

Setup 2: Setup 2 is designed with the public cloud having three PMs and ten VMs, while the number of cores in 
the MC is three.

Setup 3: For the third setup, the number of PMs and VMs in the public cloud is 4 and 20; and the MC is comprised 
of four cores.

Setup 4: The number of PMs and VMs in the setup 4 is five and 20 and the cores assigned in the MC are five. 

Comparative Analysis        
This subsection presents the comparative analysis, where the performance of existing EnReal, Xue Lin et al., 

and DA-TSis compared with that of ADO-MTS and evaluated using the three performance evaluation measures by 
varying the task sizes, as given below.

Comparison based on Resource Utilization
The analysis based on resource utilization in the comparative techniques is illustrated using Figure 4 for the 

four cloud setups. The analysis is made by fixing the number of tasks as 20, 30, 40, and 50. Maximum utilization of 
resources indicates that the technique has performed the task scheduling process effectively. Figure 4.a presents the 
analysis based on resource utilization for the first cloud setup. For the first setup, when the task size is 20, Xue Lin 
et al. have the resource utilization of 0.5516, while that in EnReal and DA-TS is 0.5519. Meanwhile, the proposed 
ADO-MTS technique has a value of 0.552. Increasing the number of tasks to 30, Xue Lin et al.,EnReal, and DA-TS 
have attained the resource utilization of 0.5111, 0.5114, and 0.5117, respectively, for setup 1. Figure 4.b presents 
the analysis based on resource utilization for the second cloud setup. The utilization of resources has increased to a 
value of 0.5494 in Xue Lin et al., for the same number of tasks, for setup 2. However, at that instant, ADO-MTS can 
attain a value of 0.5502. Figure 4.d presents the analysis based on resource utilization for the second cloud setup. For 
setup 4, when 0.5355 is the resource utilization obtained using Xue Lin et al. with the task size fixed to 20, a little 
improvement is observed in EnReal method that has the resource utilization of 0.5359. In the same setup and task size, 
the utilization of resource measured using ADO-MTS is 0.5372. When the number of tasks is kept atits maximum, 
i.e., 50, the resource utilization attained using all the comparative techniques seems to have a similar result without 
significant deviation. However, the proposed technique has obtained the maximum resource utilization of 0.5438 for 
setup 4, while that in the existing DA-TS is 0.5433.    
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(a) (b)

(c) (d)

Figure 4. Comparative Analysis based on Resource Utilization in (a) Setup 1, (b) Setup 2, (c) Setup 3, 
and (d) Setup 4.

Comparison based on Makespan
This subsection illustrates the results of the comparative analysis performed based on Makespan in all the 

techniques considered for various task sizes in the four setups using Figure 5. Figure 5.a presents the analysis based 
on Makespan for the first cloud setup. A task scheduling technique is said to be effective if its Makespan is reduced. 
Xue Lin et al, EnReal, and DA-TS have Makespan of 23.75, 16.81, and 10.12, whereas the proposed ADO-MTS has 
just 6.85. Fixing the task size as 50, the Makespan seems to be increasing in the existing EnReal and DA-TS with 
values 22.85 and 13.91. Meanwhile, the ADO-MTS technique has a Makespan of only 6.22 and thus, this proves its 
effectiveness. In figure 5.b, the comparative analysis based on Makespan in setup 2 is depicted. As shown in the plot, 
the existing Xue Lin et al has taken the maximum Makespan than the other techniques compared for all the task sizes 
considered. As the number of tasks is 50, the Xue Lin et al. Makespanis 25.45. For the same task size, the Makespan 
of the proposed technique is just 8.94. The Makespan analysis for the third setup is pictured out in figure 5.c, where the 
minimum Makespan achieved by EnReal and DA-TS is 29.55 and 9.47, when the number of tasks is the least, i.e., 20. 
Meanwhile, ADO-MTS has reduced its Makespan to just 6.95, indicating that it has the minimum Makespan among 
the existing techniques. The analysis based on Makespan for the cloud setup 4 is presented in figure 5.d. Initially, when 
the number of tasks is kept atminimum, Xue Lin et al. havea Makespan of 39.82, while ADO-MTS has just 6.75. Even 
though the task size is increased to 50, the proposed technique has the Makespan of only 16.41. 



87Matish Garg and Rajender Nath

(a) (b)

(c) (d)

Figure 5. Comparative Analysis based on Makespan in (a) Setup 1, (b) Setup 2, (c) Setup 3, and (d) Setup 4.

Comparison based on Energy
A similar comparison is made regarding the energy consumed in each technique using Figure 6. The objective of 

any technique employed for task scheduling is to reduce the energy consumption so as to improve its performance. 
The comparative analysis based on energy for the first setup is given in Figure 6.a by varying the task size as 20, 30, 
40, and 50. When 0.4934 is the energy attained by Xue Lin et al. for 20 tasks, the proposed ADO-MTS technique 
has utilized an energy value of just 0.2299. As the number of tasks is increased from 20 to 50, the energy tends to be 
increasing with a value of 0.6319 in Xue Lin et al., whereas ADO-MTS has just 0.3084. Figure 6.b sketches out the 
energy analysis for setup 2 in all the comparative techniques. At the maximum number of tasks, the energy consumed 
by the existing Xue Lin et al., EnReal, and DA-TS is 0.4239, 0.3819, and 0.2437, while that in the proposed ADO-
MTS is 0.1847. In figure 6.c, the plot showing the energy analysis for the third setup is pictured out. Here, initially, the 
energy consumed by the proposed technique is 0.2196, which increases to 0.2512 at the maximum number of tasks. 
Figure 6.d presents the comparative analysis based on energy for setup 4, where the minimum energy attained among 
the existing techniques is 0.2255 by DA-TS. However, it is possible to obtain a minimum energy of 0.1756 using the 
proposed technique. Thus, it is clear that the proposed ADO-MTS has the minimum energy consumption than the 
existing Xue Lin et al., EnReal, and DA-TS techniques. 
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(a) (b)

(c) (d)

Figure 6. Comparative Analysis based on Energy in (a) Setup 1, (b) Setup 2, (c) Setup 3, and (d) Setup 4.

DISCUSSION
The comparative discussion based on the overall analysis is illustrated in this section using Table 2. It lists the 

maximum performance attained by Xue Lin et al., EnReal, DA-TS, and ADO-MTS, irrespective of the size of the 
tasks, for the four cloud setups.

Table 2. Performance Comparison.

Comparative 
Techniques

Performance Measures Setup 1 Setup 2 Setup 3 Setup 4

Xue Lin et al. Resource Utilization 0.5516 0.5494 0.5192 0.579

Makespan 20.74 18.01 37.3 31.82

Energy 0.4925 0.4107 0.4195 0.3597

EnReal Resource Utilization 0.5519 0.5497 0.5196 0.579

Makespan 16.81 13.29 29.55 25.3

Energy 0.4238 0.3012 0.3442 0.3291
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DA-TS Resource Utilization 0.5519 0.5501 0.5196 0.5791

Makespan 10.12 9.27 9.47 8.03

Energy 0.3471 0.1813 0.2613 0.2255

ADO-MTS Resource Utilization 0.552 0.5502 0.5197 0.5795

Makespan 6.22 6.26 6.95 6.22

Energy 0.2299 0.092 0.2196 0.1756

As shown in Table 2, the maximum performances observed among the comparative techniques in terms of resource 
utilization, Makespan, and energy are represented in bold. When the maximum utility of resources obtained in Xue 
Lin et al. is 0.5494 for setup 2, the proposed ADO-MTS has aresource utilization of 0.5502. The minimum Makespan 
observed in ADO-MTS is 6.22 for two cloud setups, 1 and 4, while the existing DA-TS has a value 8.03 as its 
minimum Makespan. Analyzing the energy consumption, it is seen that the proposed technique has the least energy 
than the comparative techniques with a value of 0.092 for setup 2. Meanwhile, the minimum possible energy in the 
existing DA-TS is 0.1813, which increases considerably in other techniques. Thus, from the discussion, it is obvious 
that the proposed ADO-MTS technique has attained the maximum performance for all the cloud setups considered.      

CONCLUSION
This paper presents an energy aware task scheduling technique, known as ADO-MTS, considering energy 

consumption as the major objective. An energy model is designed for the allocation of resources in the public cloud 
and MC to compute the energy consumption during task scheduling. For the optimal scheduling of tasks to the suitable 
resources, ADO algorithm is proposed by the integration of CAViaR model in DA, which utilizes the multiobjective 
model in the fitness function. The fitness function formulated using multiple objectives, that is, energy consumption, 
Makespan, and resource utilization, helps in determining the best resource for the task based on the priorities of 
the tasks. Thus, the proposed energy aware ADO-MTS technique schedules the task effectively in both the cloud 
environments. The performance of the proposed ADO-MTS technique is compared with three existing techniques, 
namely, Xue Lin et al., EnReal, and DA-TS, and is evaluated using the performance evaluation measures like resource 
utilization, Makespan, and energy. The results show that the ADO-MTS technique has provided the high performance by 
obtaining a maximum resource utilization of 0.5795, minimum Makespan of 6.22, and minimum energy consumption 
of 0.092, respectively. From the comparative analysis, it can be concluded that the ADO-MTS technique outperforms 
the existing techniques compared, performing the task scheduling process effectively. However, the computational 
time of the proposed method is slightly high. In future, we will develop the task scheduling algorithm with the aim of 
minimizing the computational complexity.
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