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ABSTRACT
Image denoising always plays a vital role in various engineering bids. Moreover, in image processing technology, 

image denoising statistics is persisted as a substantial dispute. Over the past decades, certain denoising methods have 
reached incredible accomplishments. Since there is no much contribution on image denoising considering multimodal 
and heterogeneous images, this paper motivates us to extend it with the aid of intelligent approach. Dual-tree Complex 
Wavelet Transform (DT-CWT) is exploited for image transformation for which the wavelet coefficients are estimated 
using Bayesian Regularization (BR). To ensure the denoising performance for heterogeneous images, the statistical 
and wavelet features are extracted. Subsequently, the image characteristics are combined with noise spectrum to 
develop BR model, which estimates the wavelet coefficients for effective denoising. Hence, the proposed denoising 
algorithm exploits two stages of BR. The first stage predicts the image type, whereas the second stage estimates 
appropriate wavelet coefficients to DT-CWT for denoising. As a main contribution, the filter coefficients of DT-CWT 
are optimized by Genetic Algorithm (GA).  The performance of the proposed model is analysed in terms of Peak 
Signal to Noise Ratio (PSNR), Second derivative Measure of Enhancement (SDME), Structural Similarity (SSIM), 
Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson Coefficient 
(PC), and Symmetric Mean Absolute Percentage Error (SMAPE), respectively. The proposed model is compared to 
the conventional models, and the significance of the developed model is clearly described. From the analysis, it is 
observed that the PSNR of the developed model is 69.97%, 5.85%, 76.91%, 33.38%, 46.40%, and 46.44% better than 
2D SMCWT, DT-CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT, respectively. Similarly, for SSIM measure, the 
proposed model has great deviation over conventional methods, and the model is 19.17%, 83.66%, 24.65%, 72.99%, 
and 73.15% better than DT-CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT, respectively.
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INTRODUCTION
Image noise removal is a necessary pre-processing function in diverse optical engineering applications (Liu & 

Fang, 2015; Wang & Kai Fu, 2010; Nasri & Nezamabadi-pour, 2009; Jin, 2013; Liu et al., 2009; AM Wagh & Todmal, 
2015; Sable & Jondhale, 2010). The multiple noises occurred from the image acquisition, and transmission process 
destroys the image quality. In the domain of image processing, image denoising has been persisted as a significant 
issue (Guo et al., 2017; Hou et al., 2011; Wang et al., 2013; Ghorai, 2013; Xin & Jiangtao, 2011). As a challenge to 
this issue, numerous researchers have developed several noise reduction techniques for the removal of noise from the 
image. The development of new sensors and the improvement of image denoising models have eventually brought the 
remote sensing community to consider the use of satellite images acquired under heterogeneous conditions (Wei et al., 
2017; Maoguo et al., 2016; Zhun-ga et al., 2017; Luigi et al., 2017). This has led to methods based on heterogeneous 
sources of data (Wei et al., 2017; Puzhao et al., 2016; Zhun-ga et al., 2017; G. Mercier et al., 2008; Jorge et al., 
2015; Zhunga et al., 2018), also referred to as multi-source (Maoguo et al., 2016; Devis et al., 2016), multi-modal 



155P.Venkata Lavanya, C.Venkata Narasimhulu and K.Satya Prasad

(Redha et al., 2018), multi-sensor or cross-sensor (Bard et al.,  2009; Michele et al., 2015; Redha et al., 2018), and 
information unbalanced data (Linzhi et al., 2017). Among those techniques, more conventional algorithms execute 
image denoising process in the pixel domain. Over the past decades, some denoising techniques based on transform 
domain have revealed incredible achievements (Rabbani, 2009; Shang et al., 2012; Yang et al., 2012; Wong et al., 
2011; Luo & Zhu, 2012; Decker et al., 2010).  In fact, the transform-based denoising characteristically approximates 
the true signal by a linear grouping of some basic features (Liu et al., 2008), which specifies the signal in the form of 
transform domain. Thus this technique transfers the true signal energy by conserving some transform coefficients with 
high magnitude and destroys the uncertainty due to noise, leading to estimate the true signal in an effective manner. 
Moreover, the properties of transform, as well as true signal, provide the sparsity of overall representation.

In fact, a number of standard models are there for denoising the noisy image, which has the capability of performing 
distinct filtering process that minimizes the level of noise. However, the image comes under the blur condition or 
under over smoothed since it loses its edges. Noise minimization is utilized to eliminate the noise even without losing 
any details present in the images. Some of the spatial filters, such as mean as well as median, are utilized to eliminate 
the noise from the corresponding image. However, a drawback of the spatial filter is that while smoothing the image, 
the edges become blurred. Thus, the wavelet transform is very efficient to preserve the image’s edges. It is considered 
as one of the powerful tools of signal processing because of its multi-resolution possibilities. Wavelets also produce 
the effective performance in denoising the image with its precious properties like sparsity as well as multi-resolution 
structure. Moreover, wavelet transform (Li et al., 2016) has already shown its effectiveness in removal of noise, also 
minimizes the complexity of the computations, and facilitates best noise minimization performance.

The wavelet transform achieves effective sparsity for localized details including edges and singularities. Basically, 
those details are typically very high in natural images and also convey the particular portion the data embedded in, 
and the wavelet transform is represented as the distinct application for denoising of image (Wang et al., 2010). More 
advanced denoising models are developed based on wavelet transforms (Beck & Teboulle, 2009; Luisier et al., 2007; 
Pizurica & Philips, 2006; Portilla et al., 2003; Yan et al., 2008). For some particular natural images, the wavelet 
coefficients comprise small magnitudes, but present some large magnitude also, which is considered as the vital high-
frequency features of image including edges. Between all wavelet coefficients, the white noise is distributed evenly, 
but while eliminating small wavelet coefficients, minimizing the noise energy at the time of preservation. The problem 
of image noise suppression remains an open challenge, especially in situations where the images are acquired under 
poor conditions where the noise level is very high. To denoise an image, wavelet transform is adopted because it gives 
coefficients with respect to the functions. Once the coefficients are obtained, they can be used for any purpose. With 
that coefficience, one can reconstruct, denoise, compress the image, etc.

This paper contributes an intelligent image denoising model. The proposed denoising algorithm exploits two 
stages of BR. The first stage categorizes the image types, whereas the second stage estimates appropriate wavelet 
coefficients to DT-CWT for denoising. The paper intends to exploit BR since it explores advantages like easier 
implementation, good result obtainment in most of the cases, and also it necessitates a smaller amount of training 
data to estimate parameters (Aggarwal et al., 2005). Further, the filter coefficient parameter of DT-CWT is optimally 
selected using Genetic Algorithm (GA), which is chosen because it can find fit solutions in much less time. Moreover, 
it is intrinsically parallel and gives chances for getting more optimal solutions. In addition, DT-CWT parameters solve 
the problems of shift variance and low directional selectivity in two and higher dimensions found with the commonly 
used Discrete Wavelet Transform. Since the Bayesian Network has been used for both image classification and image 
denoising, the process is termed as Dual-stage network. The proposed model is compared to conventional methods 
like 2D Scale Mixing CWT (2D SMCWT), DT-CWT, Dual-Tree Complex DWT (DT-CDWT), Dual-tree Real DWT 
(DT-RDWT), Wavelet Soft Thresholding (W-ST), and Wavelet Hard Thresholding (W-HT).    The rest of the paper is 
organized as follows: Section II reviews the literature work. Section III describes the developed image classification 
model. Section IV explains the weight optimization based image denoising strategy. Section V discusses the results 
obtained, and Section VI concludes the paper.    
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LITERATURE REVIEW

In 2017, Guo et al. have presented the image denoising model, which was on the basis of ‘Stationary Wavelet 
Transform (SWT)’ along light noise. SWT based denoising procedure was offered after the analysis of light noise. 
With the use of this denoise algorithm, the developed model was established conforming to granting accurate DIC 
measurements even in the light noise scenario. Further, the developed method was compared with the existing models, 
and the real-time experimentation was also carried out to ensure the performance of the model. From the results, it was 
evident that the developed denoising model could be applied for the full-field strain measurement in light interference 
with more accuracy and stability, respectively.

In 2016, Li et al. have developed a ‘Wavelet-based Contour let transform (WBCT)’ model to achieve an Adaptive 
Optics image denoising. This model was implemented via ‘Bayes Shrink’ theory for the assessment of the threshold. 
Then they also contributed to the enhancement of the adaptive model for threshold choosing by which they have 
attained optimal threshold. Here, the denoising of image was achieved by choosing the adaptive optimal threshold by 
using the WBCT transform coefficients of varied decomposition scale and directions. The algorithm was evaluated 
with the aid of ‘DTCWT-BayesShrink algorithm’, DWT-NA Bayes Shrink algorithm’, and ‘CbATD algorithm’. The 
developed model was examined using real AO images and simulated images. From the analysis, they have attained 
better performance in terms of ‘peak signal-to-noise ratio (PSNR)’ and visual quality as well.

In 2014, Remenyi et al. have developed an image denoising model, which was on the basis of ‘2D scale-mixing 
complex-valued wavelet transform’. To attain this, they have used both unitary (minimal) and maximal (redundant) 
versions. By this, they have established the covariance structure of a noise, namely, white noise in wavelet domain. 
The model assessment was achieved through empirical Bayesian modalities that include the preserved versions of the 
complex-valued wavelet coefficients. Hence, the new procedure has displayed the perfect quantitative performance as 
well as visual performance through simulation.

In 2015, Jesus et al. have established a model for high resolution small animal 3D PET data. This has been aimed 
for the minimization of noise and for providing the detailed pervasiveness. This was on the basis of assessment of the 
non-subsampled Haar wavelet coefficients with the aid of linear estimator. The model was applied to the images like 
volumetric images, which were reconstructed without alteration influences (reconstruction). The simulation results 
have shown the pervasiveness of the developed model, and also the method has ultimately minimized the noise 
presented in the image.

In 2014, Sun et al. have presented a novel image denoising model with the use of linear Bayesian ‘Maximum a 
Posteriori (MAP)’ assessment on the basis of sparse demonstration classic. In the preliminary step, the probability 
dissemination was constructed in representation vector. They have also constructed the ‘linear Bayesian MAP 
estimator’ for obtaining the probabilistic observation. This was adopted for solving the problem, named inverse 
problem. Moreover, they have also attained the solution for closed-form solution and hence, they have achieved better 
image denoising strategy. They have also classified them to various sub-groups with their patterns and performed 
the training process of various dictionaries with the aid of ‘K-SVD algorithm.’ The denoised image was acquired by 
smearing the denoising to each subgroups, which was on the basis of estimator and also by doing mean of the two 
outputs. The proposed model was compared to the existing models. The simulation results have shown the competitive 
performance of the developed denoising model in terms of both visual quality and PSNR value. 

In 2016, Song et al. have developed a deblurring model, which was based on ‘Gradient Histogram Preserving 
(GHP)’. In the methods used for the development, they were parameterized with Hyper-Laplacian dissemination. 
With the consideration of blurring complexity, a Bayesian model named Gaussian processes reversion was used 
for assessing the parameters of the histogram. The experimentation was carried out for the developed model, and 
the results have viewed the efficiency of the parameter assessment. Moreover, the quality of the image was highly 
enhanced, and the restoration of the image was well performed.
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In 2015, Naimi et al. have developed a denoising model, which was on the basis of DTCWT with wiener filtering 
model. The experimentation was carried out for the proposed image and from the results, it was proved that the 
denoised images with DTCWT have more balancing power among smoothness as well as the accuracy, whereas the 
remaining models like SWT (Stationary Wavelet Transform) have less accuracy. They have also utilized the SSIM 
(Structural Similarity Index Measure) with PSNR as well as SSIM map for the assessment of the image quality.

In 2013, Zhang et al. have established the model of the combination of 2D discrete wavelet transform and 
bilateral denoising. Initially, they have adopted the wavelet transform for doing the image decomposition in which the 
component of low frequency persisted unaffected. Later, the image is reconstructed by treating the bilateral filtering. 
The developed model was compared to the existing models and from the results, it was proved that the combinations 
of wavelet transform and bilateral filtering could attain the betterments in retaining the details of the image. Moreover, 
it was also achieved the efficient visual effect. The model was identified as the efficient one while comparing with the 
bilateral filtering alone and wavelet transform alone.  

One of the primary challenges in the field of image processing is image denoising, where the underlying goal 
is to estimate the original image by suppressing noise from a noise-contaminated version of the image. Image 
noise may be caused by diverse intrinsic and extrinsic conditions, which are often not possible to avoid in practical 
situations. Several researchers are undoing research on image denoising concept, where they have proposed 
diverse algorithms for the purpose of image denoising. The detailed review papers on image denoising by wavelet 
transform is shown in Table 1. The different wavelet transforms adopted in the literature include Stationary wavelet 
transform (Guo et al., 2017), Contourlet transform (Li et al., 2016), Complex wavelet transform (Remenyi et 
al., 2014), Haar wavelet transform (Jesus et al., 2015), Bayesian MAP estimation (Sun et al., 2014), Gradient 
histogram (Song et al., 2016), DT-CWT (Naimi et al., 2015), and 2D-DWT (Zhang, 2013). Image denoising using 
Stationary wavelet transform (Guo et al., 2017) provides high accuracy and high stability; yet there is a presence 
of very large redundancy, and the computational complexity is increased. Next, better restoration quality and high 
PSNR is attained by the Contour let transform (Li et al., 2016), whereas it requires more calculation time and its 
basic images are localized in the frequency domain. Moreover, the Complex wavelet transform (Remenyi et al., 
2014) offers excellent quantitative and visual performance and it is conceptually simple and practically efficient 
algorithm, but it fails to perform the threshold limit selection based on statistical models of wavelet coefficients. 
The noise of the image is drastically reduced by the Haar wavelet transform (Jesus et al., 2015); yet, it is continuous 
and therefore non-differentiable and cannot compress the energy of the original signal into a few high-energy 
values. The Bayesian MAP estimation (Sun et al., 2014) is an effective method to remove noise that is possible to 
obtain sharp edges and clear textures and high quality. However, the information is theoretically infeasible, and 
the process is not automatic and computationally infeasible. In addition, the restoration of image texture is easy in 
gradient histogram (Song et al., 2016), and it exhibits improved image quality, but the robustness and the detection 
speed are very low. Moreover, DT-CWT (Naimi et al., 2015) provides high efficiency in denoising, less redundant 
and easy computation, whereas it takes a long time as the process is too long. Furthermore, 2D-DWT (Zhang, 2013) 
can retain all the required details from the image and suppress the image noise. However, the complexity is high 
and it is theoretically difficult to understand and interpret the results. 

In recent years, wavelet transform has attracted significant attention in scientific research and engineering 
applications since it is very powerful for analyzing transient signals/images for its capability of multiresolution analysis 
with localization in both time and frequency domains. The wavelet-based multiresolution analysis is very efficient 
in pattern recognition, image compression, and image denoising, but there is no guarantee for all these denoising 
techniques that edges can be preserved well when high PSNR is achieved for the denoised image. Motivated by the 
above mentioned points, this paper develops an effective optimized wavelet-based denoising approach.
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Table 1. Review on Image Denoising by Wavelet Transform.

Author 
[Citation]

Adopted 
Methodology Features Challenges

Xiang et al. 
(2017) 

Stationary wavelet 
transform

High accuracyv 

High stabilityv 

Presence of redundancyv 

Increased computational v 
complexity

Li et al. 
(2016)

Contourlet 
transform

Better restoration qualityv 

High PSNR valuev 

Requires more calculation timev 

Its basic images are localized in the v 
frequency domain

Remenyi et al. 
(2014)

Complex wavelet 
transform

Excellent quantitative and v 
visual performance
Conceptually simple and v 
practically efficient algorithm

Failed to perform threshold limit v 
selection based on statistical models 
of wavelet coefficients

Jesus et al. 
(2015)

Haar wavelet 
transform

Drastically reduces the noisev 

Improved variance v 
stabilization

It is continuous and therefore non-v 
differentiable
It can’t compress the energy of v 
the original signal into a few high-
energy values

Sun et al. 
(2014)

Bayesian MAP 
estimation

Effective method to remove v 
noise
Possible to obtain sharp edges v 
and clear textures
High qualityv 

Information acquired is v 
theoretically infeasible
Not automatic and computationally v 
infeasible

Song et al. 
(2016)

Gradient 
histogram

Can easily restore the image v 
textures
Improved image qualityv 

Less robustnessv 

Low detection speedv 

Naimi et al. 
(2015)

DT-CWT High efficiency in denoisingv 

Less redundant and easy v 
computation

 Long process leads take a long v 
time

Zhang et al. 
(2013)

2D-DWT Can better retain the required v 
details from the image
Suppress the image noisesv 

Greater complexityv 

Difficulties in data interpretationv 

BACKGROUND
Feature Extraction

Image denoising procedure is carried out for five sets of images like texture, nature, medical, satellite, and other 
images. In order to extract features from each image, this paper uses Noise power spectra (NPS) and bark frequency 
after adding noise to the images, which are described as follows. 

NPS: In general, NPS (Hanson, 1998) is also termed as Weiner spectrum, which is modeled as Fourier Transform 
of noise images that are given in Eq. (1) as a mathematical form, where  indicates the position and  specifies 
the noise image. The bracket  denotes mean over an infinite ensemble of noise images. Over the area , integration 
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is provided that extends to infinity. If the image is in 2-dimension frequency domain, NPS of an image is naturally in 
2-dimension format. If the noise is Gaussian distributed regarding a zero mean value and stationary, the NPS can be 
termed as a method that provides effective characterization of the noise. Therefore, the covariance is independent of 
position in the image.

                                             (1)

The average of the power of Fourier transform of noisy image samples obtained from a single noisy image or 
multiple images is the estimation pattern of NPS. Through this method, gradual alternation in the image intensity is 
eliminated, and samples are windowed before taking the Fourier transform. However, it is a complex task to work with 
frequency region of NPS and its analysis. Let M be the averaged samples, and relative rms deviation in the power in 
each 2-dimesnional frequency bin is almost . Even though the method is complex, it generates the outcome with 
outright normalization that admits various laboratories.

In the spatial domain, the convolution of two images is proportionate to multiplication in the frequency domain 
Fourier transforms. Thus, the NPS of a noisy image is improved by convolving a noisy image with a by a factor of , 
where a denotes the convolution kernel and A refers to the Fourier Transform of a. As the total power in the frequency 
domain is equal to the spatial domain, Eq. (2) determines the variance of convolved image. 

                                                                           (2)

In the case of discretely sampled images, –fM to fM are the ranges of integration for both fx and fy , where fM 

indicates the Nyquist frequency. The term fM  is determined using Eq. (3), where l denotes the pixel spacing in both 
x and y directions.

                                                                                                          (3)

The modified equation of Eq. (2) is provided in Eq. (4), where Ka indicates the normalization constant and the 
bracket  refers to an average function of the power spectrum of a, which is weighted by .

                                                                                                 (4)

The reciprocal of total power of kernel defines Ka, which is given in Eq. (5), where the elements of the convolution 
kernel for discretely sampled images are denoted as ai, j.

                                                                                      (5)

Therefore, NPS F1 of the image at concerned spatial frequencies is estimated by properly choosing not only the 
convolution kernel but also the variance in the convolved noise image.

Bark frequency: It is defined as “a frequency scale on which equal distances correspond with perpetually equal 
distances” (Chung et al., 2017). In fact, the critical band can be termed as bark scale, a perpetual measure that is 
associated with image frequency to the perpetual resolution, which is non-linear. Here, one critical band is covered by 
one bark. Eq. (6) specifies the logical expression of the mapping function from f̂ frequency to B bark frequency.

                                                     (6)

Classification

Before denoising the image, it is essential to analyze the type of the image. Here, BR classifier is used to classify 
the type of the image. BR is selected since it has been proven to have better predictive capability to reveal relationship 
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between data of different data distributions (Aggarwal et al., 2005). The extracted features F1 and F2 are given as the 
input to BR classifier, which results in the respective type of image. The BR classifier model is explained in the below 
section. 

Optimization Of Filter Coefficients

In this paper, the filter coefficient parameter of DT-CWT is optimally selected using GA algorithm (Call, 2005). 
The algorithm consists of six major steps. (i) Crossover, (ii) Mutation, (iii) Genotype-Phenotype Mapping, (iv) Fitness, 
(v) Selection, and (vi) Termination.

Crossover: This is an operator, which allows the permutation of the genetic factual of two or more solutions. 
Naturally, most species comprise two parents. Moreover, in some exceptional cases, there are no different sexes 
and thus they have only one parent. This operator implements an application, which combines the genetic factual of 
the parents. A famed one for bit string demonstration is c point crossover. It splits into two solutions at c positions 
and consecutively gathers them into one. The formulation for crossover is defined in Eq. (7) and Eq. (8), where i 
indicates ith gene, Cp indicates the crossover point, and Cr indicates the crossover rate and L indicates the length of 
chromosome.

                                                           (7)

                                                         (8)

Mutation: This is the second step, in which the mutation operator alters the solutions by distributing them. 
Mutation works on the basis of random changes. The strength of this disruption is known as the mutation rate. Three 
major desires are there in the mutation operator. The initial condition is reachability. Every point in the solution space 
must be accessible or reachable from the random point in the solution space. The second condition is unbiasedness. 
The operator should not persuade a point of the exploration to a specific direction. The third condition or principle of 
this operator is scalability. Each mutation operator must grant the degree of freedom that its strength is adjustable. The 
formulation for mutation is in eq. (9), where ,  indicates the real number with dimension NR.

                                                                                     (9)

Genotype-Phenotype Mapping: The new offspring population has been estimated after the evaluation of 
crossover and mutation operators.  The mapping of the chromosome (genotype) depends on the representation, named 
as phenotype. This type of genotype-phenotype mapping must avoid the bias introduction.

Fitness: In this step, the phenotype of solution is formulated on fitness model. This function measures the solution’s 
quality, which is generated by this algorithm. Further, it is a part of modeling process of the entire optimization model. 
The performance of GA in problem-solving is measured in correspondence with the count of required fitness function 
assessments till the optimal is found. 

Selection: The selection is a process that chooses the parents of the new generation, which is termed as survival 
selection. This operator defines which operator must survive and which operator must die. This perception directly 
implements the ‘Darwin’s Principle of survival’. However, the developed survival operator can be employed for 
mating selection, which is the part of the crossover operators. Moreover, mating strategy is a vital part, where it 
decides which parents should join in the crossover progression.

Termination: This condition defines when the major evolutionary loop terminates. GA often runs in the predefined 
count of generations. The time and cost of the fitness model estimation often restrict the length of the optimization 
procedure. 
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The pseudo code of the GA algorithm is given in Algorithm 1 and the flow chart is illustrated in Fig. 1.

Algorithm 1: GA-based Filter Coefficient optimization
Initialize the random C population
Formulate the fitness Fit( p) of each p chromosome in the population
Repeat
Choose the ‘best’ entities that are to be utilized by the genetic operators 
Generation of new entities using crossover and mutation operators.
Fitness evaluation of new entities
‘Worst’ entities are replaced by ‘best’ entities
Until it reaches the ‘best’ solution

Fig. 1. Flow chart for GA- based filter coefficient optimization.

Bayesian Regularization

BR is a regularization technique that has the capability of obtaining the lower mean squared errors. The framework 
for neural network is on the basis of probabilistic interpretation of the parameters of the network and involves a 
probability distribution of network weights. In the BR network, the regularization adds subordinate term and objective 
function to penalize large weights for attaining better smoother mapping. The objective function as given in Eq. (11) 
is minimized using gradient-based optimization algorithm. 
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                                                                     (11) 

where  is , the sum of squares of network weights W, α and β are the hyperparameters, MS 
denotes the mean sum of squares of the network error,  specifies the input target features, NN refers to the 
neural network architecture, which comprises the specification of count of layers, count of unit in every layer, and 
the activation function type,  is known as weight decay, and α is also termed as decay rate. If , then 
the algorithm minimizes the error, and the training of algorithm reduces the weight size if . The posterior PD 
distribution of weight is updated using Bayes’ rule, which is defined in Eq. (12), where  denotes the prior 
distribution of weight, and  denotes the likelihood function.

                                              (12)

The optimized weight maximizes the posterior probability of W, which is equivalent to reducing the regularized 
objective function . The joint posterior density is defined as given in Eq. (13).

                                                    (13)

According to Mackay, Eq. (12) is determined as given in Eq. (13), where p and q specify the count of observation 
as well as the total count of parameters of network, respectively. Eq. (14) (Laplace approximation) grants Eq. (15), 
where HMAP denotes the Hessian matrix of the objective function and MAP stands for ‘Maximum A Posteriori.’

    

                                               

(14)

                                                               (15)

The parameter at t iteration is updated as given in Eq. (16), where μ refers to the Levenberg damping factor, and J 
denotes the jacobian matrix, which comprises the first derivative of the network errors in terms of network parameters. 
Further, μ is adjustable for all iterations, which leads to optimization. 

                                                                               (16)

Therefore, BR classifier automatically predicts the filter coefficient that to be given to DT-CWT for denoising each 
image. 

To analyze the performance of the proposed model, the performance metrics such as PSNR, SDME, SSIM, MSE, 
RMSE, MAE, PC, and SMAPE are used, where the mathematical formulation is given in Table 2 (Srivastava, 2014).
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Table 2. Performance metrics utilized for analysis.

Performance Measures Formulas

PSNR

SDME

SSIM

MSE

RMSE

MAE

PC

SMAPE

PROPOSED METHODOLOGY
Proposed Architecture

Fig. 2 illustrates the block representation of the proposed DT-CWT based image denoising model. This model 
intends to denoise the input image, and the procedure is as follows: the preliminary process is adding noise to the 
input image, by which the effective denoising of image can be achieved. This work mainly contributes two tasks: (i) 
classification of image type using BR and (ii) denoising the image by estimating the optimal wavelet coefficient to 
DT-CWT using GA. In the first contribution, the extracted F1 and F2 features are given as the input to BR classify the 
corresponding image. 
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Fig. 2. Block diagram of proposed image denoising model.

On the other hand, the contribution is made in solving the problem of determining the optimal ‘filter coefficient’ 
to increase the PSNR value. Here, GA algorithm is used to identify the apt filter coefficient. The objective function of 
the proposed model is defined in Eq. (17).

                                                                                               (17)

DT-CWT Model

DT-CWT (YueSi et al., 2016; Selesnick et al., 2005; Mohan et al., 2016; Sunil et al., 2016) is one of the effective 
models for the application of analytic wavelet transform. This model consists of two real DWTs: the first DWT 
grants the real part of transform, whereas the second grants the imaginary part.  Further, the model grants perfect 
reconstruction and directional discernment and is independent of count of scales. The diagrammatic representation of 
DT-CWT is illustrated in Fig 3, where  and  refer to the low pass/high pass filter pair for upper Filter Bank 
(FB) and  and  denotes the low pass/ high pass filter pair for lower FB, respectively.
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Fig. 3. Diagrammatic representation of DT-CWT model.

Consistent with wavelet theory, both wavelet coefficients  and scaling coefficients  of the real part 
transform are attained through inner products, which are defined in Eq. (18) and Eq. (19), where i refers to the scale 
factor,  j denotes the decomposition level, and  and  denote the wavelet functions of real part transform. Further, 
the coefficients of the imaginary part transform can be formulated as defined in Eq. (20) and (21).  

                                                        (18)

                                                                       (19)

                                                    
(20)

                                                                 
(21)

Hence, the wavelet as well as the scaling coefficients of DT-CWT are acquired as defined in Eq. (22) and (23), 
respectively. Then the wavelet or scaling coefficients are reconstructed as defined in Eq. (24) and (25), respectively.

                                                         (22)

                                                                            (23)

                            
(24)

                             
(25)
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DT-CWT decomposes the vibration signal , which is defined as given in Eq. (26), where  and 
 denotes the sub-band signals that are organized from high to low frequency. 

                                                                                        (26)

The application of 2D DT-CWT comprises two major steps: Initially, the input image is decomposed up to 
certain levels via two 2D- DWT branches, a and b. At each level, six high pass sub-bands are engendered like 
HLa, LHa, HHa, HLb, LHb and HHb. Next to this, the respective sub-bands that have same pass bands are combined 
linearly through averaging or differencing. As a result of this, the sub-bands of 2D DT-CWT at all levels are 
generated as defined in Eq. (27)

The six wavelets defined here have sum or difference operation, which is orthonormal. Further, the 2D DT-DWT 
has same basis function and real part, and the structure has the extension of conjugate filtering. 

                                          
(27)

Among the analysis filter, the low pass  and high  pass filters of first level coefficients and low pass 

 of second level coefficients are given as solutions for optimization since the mentioned coefficients give more 
informative details about the image. The solution encoding is diagrammatically illustrated in Fig. 4, where 

 denotes the number of samples. 

Fig. 4. Representation of solution encoding.

RESULTS AND DISCUSSIONS
Simulation Setup

The developed intelligent image classification was carried out in MATLAB 2015a. Five image sets were chosen, 
namely, Texture image set, Nature image set, Medical image set, Satellite image set, and Miscellaneous image 
set. The texture images were downloaded from (http://www-cvr.ai.uiuc.edu/ponce_grp/data/: access data 2019-02-
15), medical images were downloaded from (http://www.ultrasoundcases.info/case-list.aspx?cat=26: access date 
2019-02-15), satellite images were manually collected, natural images were downloaded from (http://www-cvr.
ai.uiuc.edu/ponce_grp/data/: access data 2019-02-15), and  miscellaneous images were downloaded from two links 
(http://vismod.media.mit.edu/pub/VisTex/ , https://sites.google.com/site/dctresearch/Home/content-based-image-
retrieval: access data 2019-02-15). The images Features like NPS and Bark frequency were extracted from the 
image. The classification was done using BR classifier. Moreover, the classifier was trained using the renowned GA 
algorithm, where the optimized filter coefficients of DT-CWT were generated. The performance of the proposed 
model was analyzed in terms of measures like PSNR, SDME, SSIM, MSE, RMSE, MAE, PC, and SMAPE, 
respectively. Further, the developed model was compared to some of the conventional models like 2D SMCWT, 
DT-CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT in terms of efficient image denoising. Fig 5 illustrates the 
experimental results for five image sets using proposed and conventional models.



167P.Venkata Lavanya, C.Venkata Narasimhulu and K.Satya Prasad

Models
Image sets

Texture Image Nature image Medical image Satellite image Miscellaneous 
image

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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(h)

(i)

Fig. 5. Experimental results using five image sets for proposed Denoising model over the conventional models 
for a) Original image, b) Noisy image,  c) 2D SMCWT-based denoising, d) DT-CWT-based denoising, 

e) DT-CDWT-based denoising, f) DT-RDWT-based denoising, g) W-ST-based denoising, 
h) W-HT-based denoising, and i) Proposed image denoising.

Qualitative Assesment

Table 3 shows the performance analysis of proposed model over conventional methods in terms of various 
analytical measures. The analysis has been made for all the five image sets. From Table 3, it is observed that, for 
texture image, the proposed model has attained promising results. PSNR of the developed model is 69.97%, 5.85%, 
76.91%, 33.38%, 46.40%, and 46.44% better than 2D SMCWT, DT-CWT, DT-CDWT, DT-RDWT,W-ST, and 
W-HT, respectively. The SDME of the proposed model is 97.42%, 41.26%, 98.64%, 89.66%, 93.88%, and 93.89% 
superior to 2D SMCWT, DT-CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT, respectively. Similarly, for SSIM 
measure, the proposed model has great deviation over conventional methods, and the model is 19.17%, 83.66%, 
24.65%, 72.99%, and 73.15% better than DT-CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT, respectively. The 
MSE of the proposed model is 97.05%, 27.31%, 97.83%, 81.30%, 90.11%, and 90.12% better than 2D SMCWT, 
DT-CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT, respectively. The MAE of the model is 12.33%, 86.39%, 
57.68%, 70.13%, and 70.16% better than DT-CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT, respectively. The 
PC of the proposed model is 98.24%, 11.73%, 22.51%, 10.99%, 17.51%, and 17.53% superior to 2D SMCWT, DT-
CWT, DT-CDWT, DT-RDWT, W-ST, and W-HT, respectively. For SMAPE measure, the proposed model is 90.50%, 
10.11%, 84.61%, 65.46%, 79.40%, and 79.43% superior to 2D SMCWT, DT-CWT, DT-CDWT, DT-RDWT, W-ST, 
and W-HT, respectively. For nature image set, it is observed that the PSNR of the proposed model is 67.16% and 
12.71% better than 2D SMCWT and DTCWT, respectively. The same analysis is made for all the other image sets 
and it is clearly tabulated in Table 3. Altogether, it is reviewed that the performance of the proposed model is more 
efficient than that of the conventional methods by denoising the images more precisely. 
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Table 3. Performance Of Proposed Model Versus Conventional Methods In Terms Of Various Analytical Measures.

Texture images
Methods PSNR SDME SSIM MSE RMSE MAE PC SMAPE
W-HT 11.679 -0.285 0.3172 4551.4 67.093 57.35 47326 0.858
W-ST 11.686 -0.285 0.317 4543.9 67.037 57.31 47336 0.857

DT-RDWT 14.526 -0.168 0.4406 2403.2 48.549 40.45 51081 0.511
DT-CDWT 5.0333 -1.288 0.089 20784.9 143.79 125.80 44469 1.148
DT-CWT 20.530 -0.029 0.460 618.2 24.466 19.52 50655 0.196

2D-SMCWT 6.5477 -0.675 -0.000 15246.1 122.01 114.6 1009.4 1.860
Proposed 21.806 -0.017 0.549 449.37 20.996 17.11 57391 0.176

Natural images
W-HT -1.804 -0.155 0.072 6524 2940 1850.3 21722 0.1528
W-ST -1.801 -0.155 0.072 65249 2940 1850.3 21726 0.1525

DT-RDWT -0.950 -0.124 0.098 65193 2933.8 1845.5 23300 0.0946
DT-CDWT -4.067 -0.359 0.0210 1.34× 108 4231.3 2655.1 18633 0.2069
DT-CWT 8.4888 -0.069 0.1502 402.69 12.170 8.8928 2405 0.0344

2D-SMCWT 3.1950 -0.284 -0.0005 6177.4 49.188 40.98 51.835 0.3533
Proposed 9.731 -0.042 0.161 171.89 8.333 6.2906 26271 0.0320

Medical images
W-HT 6.55642 -0.11516 0.127394 940.8481 19.47514 14.13926 22840.94 0.068702
W-ST 6.560875 -0.11507 0.127369 938.7568 19.45269 14.12093 22848.89 0.068547

DT-RDWT 8.140015 -0.08393 0.149509 424.1882 12.89597 9.224428 25148.3 0.041373
DT-CDWT 3.602328 -0.25176 0.027016 4367.145 42.48501 32.72749 19773.04 0.103215
DT-CWT 8.916861 -0.07111 0.136066 255.6865 10.22897 7.852905 25485.98 0.023244

2D-SMCWT 3.493316 -0.28554 -0.00025 5573.821 45.89287 38.69709 352.3181 0.205667
Proposed 10.07988 -0.04745 0.151369 137.3159 7.489622 5.85446 27093.47 0.019075

Satellite images
W-HT 1.662 -0.037 0.025 659.64 9.645 8.165 5820.7 0.119
W-ST 1.663 -0.037 0.025 658.44 9.636 8.157 5822.6 0.119

DT-RDWT 2.120 -0.024 0.039 319.16 6.6905 5.513 6482.01 0.067
DT-CDWT 0.751 -0.135 0.007 2847.8 20.066 17.112 5356.5 0.165
DT-CWT 3.548 -0.006 0.055 34.10 2.152 1.644 7237.9 0.018

2D-SMCWT 1.304 -0.094 -0.0001 1249 13.085 12.52 48.319 0.258
Proposed 3.561 -0.004 0.052 31.76 2.101 1.666 7953.7 0.019

Miscellaneous images
W-HT 4.916 -0.41 0.216 9316 3678.7 2017.3 47149.2 0.3490
W-ST 4.923 -0.409 0.216 9316 3678.7 2017.3 47161.7 0.3474

DT-RDWT 7.420 -0.341 0.317 9310 3666.8 2008.1 50708.8 0.1606
DT-CDWT -0.44 -0.831 0.036 1.78E+08 5112.5 2912.8 40409.4 0.5231
DT-CWT 15.267 -0.191 0.285 4879.1 42.60 31.891 50612.3 0.1544

2D-SMCWT 5.323 -0.543 -0.001 57069.3 152.35 107.94 434.49 0.8337
Proposed 17.987 -0.168 0.3532 2461.4 29.72 22.35 54235.7 0.1289
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Adaptiveness in DT-CWT

Table 4 shows the comparison of proposed model over the conventional DT-CWT method by varying noise levels 
as 0.02, 0.04, 0.05, 0.06, and 0.08, respectively. The analysis is made in terms of various measures like PSNR, SDME, 
SSIM, MSE, RMSE, MAE, PC, and SMAPE, respectively; its formula is provided in table 2. For texture image set, 
it is observed that the proposed model has attained better PSNR at noise variance 0.02, which is 69.19% superior 
to DT-CWT, respectively. At 0.04 noise variance, the proposed model is 68.38% better than DT-CWT, respectively. 
Similarly, for 0.05, 0.06, and 0.08 noise variance, the proposed model is 68.03%, 67.71%, and 67.06% superior to 
DT-CWT, respectively. For nature image set, the PSNR of proposed model for noise variance 0.02,0.04, 0.05, 0.06, 
and 0.08 is 63.88%, 62.70%, 62.33%, 61.84%, and 61.00% superior to DT-CWT, respectively. For medical image 
set, the PSNR of proposed model for noise variance 0.02, 0.04, 0.05, 0.06, and 0.08 is 62.71%, 61.35%, 60.74%, 
60.20%, and 59.13% better than conventional DT-CWT, respectively. For satellite image set, the PSNR of proposed 
model for noise variance 0.02, 0.04, 0.05, 0.06, and 0.08 is 64.67%, 63.68%, 63.27%, 62.85%, and 62.20% better than 
conventional DT-CWT, respectively. For miscellaneous image sets, the PSNR of proposed model for noise variance 
0.02, 0.04, 0.05, 0.06, and 0.08 is 66.81%, 65.61%, 65.04%, 64.50%, and 63.53% better than conventional DT-CWT, 
respectively. The investigation is made for all the remaining measures by varying noise levels, and from the results it 
is observed that the proposed image denoising model is more efficient than the conventional DT-CWT.  

Table 4. Performance Of Proposed Versus Conventional DT-CWT In Image Denoising By Varying Noise. 

Texture images

Noise 
variance

PSNR SDME SSIM MSE RMSE MAE PC SMAPE
Proposed DT-CWT Proposed DT-CWT Proposed DT-CWT

× 10-3
Proposed DT-CWT Proposed DT-CWT Proposed DT-CWT Proposed DT-CWT Proposed DT-CWT

0.02 21.26 6.55 -0.02 -0.68 0.53 -0.25 527.12 15241.62 22.53885 122.0009 18.09 114.64 54753.43 1016.23 0.18 1.87
0.04 20.72 6.55 -0.03 -0.68 0.48 -0.24 590.43 15244.79 23.92084 122.014 19.10 114.64 51752.87 1009.98 0.19 1.86
0.05 20.49 6.55 -0.03 -0.68 0.46 -0.24 620.24 15246.14 24.54043 122.0194 19.57 114.64 50448.08 1006.39 0.20 1.86
0.06 20.29 6.55 -0.03 -0.67 0.44 -0.24 647.68 15247.36 25.10048 122.0245 19.99 114.64 49280.9 1006.52 0.20 1.86
0.08 19.89 6.55 -0.04 -0.67 0.41 -0.25 705.62 15250.81 26.23163 122.0387 20.88 114.64 47042.65 1007.97 0.21 1.85

Nature images
0.02 8.86 3.20 -0.06 -0.28 0.18 -0.57 338.92 6176.43 11.09566 49.18246 8.24 40.98 25017.99 53.56 0.03 0.37
0.04 8.58 3.20 -0.07 -0.29 0.16 -0.53 382.43 6176.77 11.86273 49.18499 8.70 40.98 24343.78 54.82 0.04 0.37
0.05 8.47 3.19 -0.07 -0.28 0.15 -0.55 403.76 6177.66 12.21283 49.18861 8.91 40.98 24023.21 49.11 0.03 0.34
0.06 8.36 3.19 -0.07 -0.28 0.14 -0.58 424.28 6177.90 12.54011 49.19018 9.12 40.99 23728.36 48.53 0.03 0.34
0.08 8.18 3.19 -0.07 -0.29 0.13 -0.54 464.05 6178.70 13.14225 49.19393 9.49 40.99 23172.14 53.16 0.04 0.34

Medical images
0.02 9.36 3.49 -0.07 -0.29 0.16 -0.23 200.91 5572.76 9.069204 45.88684 7.08 38.68 26147.92 350.59 0.02 0.20
0.04 9.03 3.49 -0.07 -0.28 0.14 -0.25 238.76 5573.29 9.908618 45.89021 7.64 38.69 25698.37 351.51 0.02 0.21
0.05 8.89 3.49 -0.07 -0.29 0.13 -0.24 256.55 5573.72 10.27418 45.89236 7.89 38.70 25480.5 349.43 0.02 0.21
0.06 8.77 3.49 -0.07 -0.29 0.13 -0.26 273.31 5574.07 10.61344 45.89452 8.11 38.70 25268.58 353.75 0.02 0.21
0.08 8.54 3.49 -0.06 -0.28 0.12 -0.26 308.90 5575.26 11.2794 45.90044 8.55 38.71 24834.53 356.31 0.02 0.20

Satellite images
0.02 3.68 1.30 -0.004 -0.09 0.07 -0.15 27.83 1248.75 1.943528 13.08382 1.50 12.53 7857.40 48.92 0.02 0.25
0.04 3.58 1.30 -0.006 -0.09 0.06 -0.14 32.22 1248.91 2.095634 13.08481 1.60 12.53 7395.54 47.94 0.02 0.27
0.05 3.54 1.30 -0.007 -0.10 0.05 -0.15 34.24 1249.07 2.161179 13.08556 1.65 12.53 7206.77 48.96 0.02 0.24
0.06 3.50 1.30 -0.006 -0.09 0.05 -0.14 36.28 1249.20 2.225776 13.08616 1.70 12.53 7019.21 47.11 0.02 0.27
0.08 3.44 1.30 -0.005 -0.09 0.05 -0.14 39.96 1249.42 2.335946 13.08741 1.78 12.53 6710.90 48.67 0.02 0.27

Miscellaneous images
0.02 16.06 5.33 -0.18 -0.55 0.33 -1.23 3876.75 57047.2 38.18263 152.3231 29.33 107.83 51957.58 435.78 0.13 0.81
0.04 15.47 5.32 -0.19 -0.54 0.29 -1.23 4548.27 57063.06 41.29973 152.3418 31.08 107.91 51027.08 430.90 0.16 0.86
0.05 15.22 5.32 -0.19 -0.55 0.28 -1.22 4876.63 57067.23 42.71521 152.3477 31.94 107.95 50589.7 441.38 0.17 0.85
0.06 14.99 5.32 -0.196 -0.54 0.27 -1.21 5221.81 57078.69 44.12461 152.3612 32.78 107.98 50152.76 428.84 0.16 0.80
0.08 14.59 5.32 -0.20 -0.54 0.25 -1.22 5872.17 57090.44 46.69325 152.3771 34.32 108.07 49334.8 435.55 0.16 0.85
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Fig 6 shows the performance of the proposed model for texture image set over the conventional methods by 
varying noise levels from 0.02 to 0.08. From Fig 6, it is observed that the PSNR of the proposed model for noise level 
0.02 is 68.96%, 10.77%, 74.56%, 31.89%, and 43.53% superior to 2D-SMCWT, DT-CWT, DT-CDWT, DT-RDWT, 
and W-ST, respectively. Similarly, SDME of the proposed model is 44.44%, 82.75%, 28.57%, and 16.66% better 
than 2D-SMCWT, DT-CDWT, DT-RDWT, and W-ST, respectively. The analysis is also made for all the remaining 
measures. From the analysis, it is observed that the proposed model has attained high SSIM and PC when compared 
to the conventional methods. Further, the model has attained low MSE, RMSE, MAE, and SMAPE, which shows the 
betterment of the proposed model. 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Performance analysis of proposed image denoising model for Texture image set by varying noise in terms of 
(a) PSNR, (b) SDME, (c)SSIM, (d) MSE, (e) RMSE, (f) MAE, (g) PC, and (h) SMAPE.  

Fig 7 shows the performance of the proposed model for nature image set over conventional methods by varying 
noise levels from 0.02 to 0.08. From the figure, it is detected that the PSNR of the proposed model is 65.14% and 
16.53% better than 2D-SMCWT and DT-CWT, respectively. The SDME of the proposed model is 89.28% and 90% 
superior to 2D-SMCWT and DT-CDWT, respectively. Similarly, the same analysis is made for all measures, and the 
superiority of the proposed model is proved from the attained results. 

(a) (b) (c) (d)
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(e) (f) (g) (h)

Fig. 7. Performance analysis of the proposed denoising  model for Nature image set by varying noise in terms of 
(a) PSNR, (b) SDME, (c)SSIM, (d) MSE, (e) RMSE, (f) MAE, (g) PC, and (h) SMAPE.  

Fig 8 illustrates the performance of the proposed model for medical image set over conventional methods by 
varying noise levels from 0.02 to 0.08. It is evident that the PSNR of the proposed model is 65.82%, 9.96%, 58.78%, 
12.01%, and 41.24% superior to 2D-SMCWT, DT-CWT, DT-CDWT, DT-RDWT, and W-ST, respectively. The SDME 
of the proposed model is 82.14%, 37.5%, 44.445, and 58.3% better than 2D-SMCWT, DT-CWT, DT-RDWT, and 
W-ST, respectively. 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Performance analysis of the proposed image denoising model for Medical image set by varying noise in 
terms of (a) PSNR, (b) SDME, (c)SSIM, (d) MSE, (e) RMSE, (f) MAE, (g) PC, and (h) SMAPE.  

Fig 9 shows the performance of the proposed model for satellite image set over conventional methods by varying 
noise levels from 0.02 to 0.08. It is observed that the PSNR of the proposed model is 61.93%, 34.095, and 51.13% 
superior to 2D-SMCWT, DT-RDWT, and W-ST, respectively. Fig 10 shows the performance of the proposed model 
for miscellaneous image set over conventional methods by varying noise levels from 0.02 to 0.08.  From the figure, 
it is observed that the PSNR of the proposed model is 17.67%, 99.9%, 55.6%, and 67.02% superior to DT-CWT, 
DT-CDWT, DT-RDWT, and W-ST, respectively. Similarly, the performance analysis of the proposed model for both 
satellite and miscellaneous image set is analyzed in terms of SDME, SSIM, MSE, RMSE, MAE, PC, and SMAPE, 
respectively. From the observed results, it is evident that the proposed model is superior to the conventional methods 
in terms of performance.      
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Performance analysis of the proposed model for Satellite image set by varying noise in terms of 
(a) PSNR, (b) SDME, (c)SSIM, (d) MSE, (e) RMSE, (f) MAE, (g) PC, and (h) SMAPE.  

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Performance analysis of the proposed model for Miscilleneous image set by varying noise in terms of 
(a) PSNR, (b) SDME, (c)SSIM, (d) MSE, (e) RMSE, (f) MAE, (g) PC, and (h) SMAPE.  

Computing Complexity

A model should be considered as an efficient model only if it incurs less computation complexity. Fig 11 shows the 
observed computational time of the proposed model. From Fig 11 it is detected that the proposed model falls on the 
second place with computing time 0.15sec. Even though it is in the second place, while analyzing the performance of 
developed model, it is proved that the proposed model is more efficient than the other conventional methods.  
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Fig. 11. Computational complexity of the proposed over conventional image denoising model.

CONCLUSION
This paper has developed a denoising algorithm for multi-modal images. Here, DT-CWT was exploited for image 

transformation for which the wavelet coefficients were estimated using BR classifier. The performance of denoising 
model was ensured by extracting the statistical and wavelet features. Consequently, the image characteristics were 
combined with noise spectrum for the development of BR model that has estimated the wavelet coefficients for 
effective denoising.  Thus, the proposed denoising algorithm has exploited two stages of BR. The first stage has 
predicted the type of image, whereas the second stage has estimated optimal wavelet filter coefficients to DT-CWT 
for denoising. The performance of the proposed model was analyzed in terms of certain measures like PSNR, SDME, 
SSIM, MSE, RMSE, MAE, PC, and SMAPE, respectively, by comparing the developed model with other conventional 
models. From the results, it was observed that, for Texture image, the proposed model had attained promising results. 
The PSNR, SDME, SSIM, MSE, MAE, PC, and SMAPE of the developed model showed approximately 46.49%, 
85.79%, 54.72%, 80.62%, 59.33%, 29.75%, and 68.25% superior to 2D SMCWT, DT-CWT, DT-CDWT, DT-RDWT, 
W-ST, and W-HT, respectively.  

REFERENCES
Aggarwal, K.K.,   Singh, Y.,   Chandra, P. & Puri, M. (2005). Bayesian Regularization in a Neural Network Model to Estimate 

Lines of Code Using Function Points, Journal of Computer Sciences, 1(4): 505-509.

Beck, A. & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal of 
Imaging Sciences, 2(1): 183–202.

Call, J.M. (2005). Genetic algorithms for modelling and optimisation, Journal of Computational and Applied Mathematics, 
184(1): 205-222.

Chung, H., Plourde, E. & Champagne, B. (2017). Regularized non-negative matrix factorization with Gaussian mixtures and 
masking model for speech enhancement, Speech Communication, 87: 18-30. 

Decker, A.D., Lee, J.A. & Verleysen, M. (2010). A principled approach to image denoising with similarity kernels involving 
patches, Neurocomputing, 73(7–9):1199-1209.

Ghorai, S.K. (2013). A novel blind source separation technique using fractional Fourier transform for denoising medical images, 
Optik - International Journal for Light and Electron Optics, 124(3): 265-271.

Gong, M., Zhang, P., Su, L  & Liu, J. (2016). Cou-pled dictionary learning for change detection from multisourcedata,” IEEE 
Transactions on Geoscience and Remote Sensing,  54(12): 7077–7091.

Guo, X., Li, Y., Suo, T. & Liang, J. (2017). Denoising of digital image correlation based on stationary wavelet transform, Optics 
and Lasers in Engineering, 90: 161-172.



175P.Venkata Lavanya, C.Venkata Narasimhulu and K.Satya Prasad

Hanson, K.M. (1998). A simplified method of estimating noise power spectra, Physics of Medical Imaging, pp. 243-250.

Hou, R., Wang, Z., Diamond, J.J., Zheng, Z., Zhu, J., Wang, Z. & Chu, B. (2011). A quantitative evaluation model of denoising 
methods for surface plasmon resonance imaging signal, Sensors and Actuators B: Chemical, 160(1): 951-956.

Jesus, H., Domínguez, O., Máynez, L.O., Villegas, O.O.V., Mederos, B., Mejía, J.M. & Sanchez, V.G.C. (2015). Denoising 
of high resolution small animal 3DPET data using the non-sub sampled Haar wavelet transform, Nuclear Instruments and 
Methods in Physics Research, 784: 581–584.

Jin, W.U. (2013). Wavelet domain denoising method based on multistage median filtering, The Journal of China Universities of 
Posts and Telecommunications, 20(2): 113-119.

Li, D., Zhang, L., Yang, J. & Su, W. (2016). Research on wavelet-based contourlet transform algorithm for adaptive optics image 
denoising, Optik - International Journal for Light and Electron Optics, 127(12): 5029-5034.

Liu, C., Szeliski, R. & Kang, S.B. (2008). Automatic estimation and removal of noise from a single image, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 30(2): 299–314.

Liu, T.C.K., Dong, X. & Lu, W.S. (2009). Multiresolution wavelet denoising for ultra-wideband time-of-arrival estimation with 
regularized least squares, Physical Communication, 2(4): 285-295.

Liu, X. & Fang, S. (2015). A convenient and robust edge detection method based on ant colony optimization, Optics 
Communications, 353: 147–157.

Liu, Z., Li, G., Mercier, G., He, Y  & Pan, Q. (2018). Change detection in heterogenous remote sensing im-ages via homogeneous 
pixel transformation,” IEEE Trans-actions on Image Processing, 27(4): 1822–1834.

Liu, Z., Zhang, L., Li, G  & He, Y. (2017). Change de-tection in heterogeneous remote sensing images based on thefusion of pixel 
transformation,” Information Fusion (Fu-sion), 2017 20th International Conference on. IEEE, 1–6.

Luisier, F., Blu, T. & Unser, M. (2007). A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding, 
IEEE Transactions on Image Processing, 16(3): 593–606.

Luo, J. & Zhu, Y. (2012). Denoising of medical images using a reconstruction-average mechanism, Digital Signal Processing, 
22(2): 337-347.

Luppino, L.T., Anfinsen, S.N., Moser, G., Jenssen, R., Bianchi, F.M., Ser-pico, S  & Mercier, G. (2017). A clustering approach 
to hetero-geneous change detection,” in Scandinavian Conference onImage Analysis. Springer, 181–192.

Mercier, G., Moser, G  & Serpico. S.B. (2008). Conditional copulasfor change detection in heterogeneous remote sensing 
images,”IEEE Transactions on Geoscience and Remote Sensing, 46(5): 1428–1441.

Mohan, Y., Chee, S.S., Xin, D.K.P. & Foong, L.P. (2016). Artificial neural network for classification of depressive and normal in 
EEG, 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur,  pp. 286-290.

Naimi, H., Houda, A.B., Mitiche, A. & Mitiche, L. (2015). Medical image denoising using dual- tree complex thresholding 
wavelet transform and Wiener filter, Journal of King Saud University - Computer and Information Sciences, 27(1): 40-45.

Nasri, M. & Nezamabadi-pour, H. (2009). Image denoising in the wavelet domain using a new adaptive thresholding function, 
Neurocomputing, 72(4–6): 1012-1025.

Pizurica, A. & Philips, W. (2006). Estimating the probability of the presence of a signal of interest in multiresolution single-and 
multiband image denoising, IEEE Transactions on Image Process, 15(3): 645–665.

Portilla, J., Strela, V., Wainwright, M.J. & Simoncelli, E.P. (2003). Image denoising using scale mixtures of Gaussians in the 
wavelet domain, IEEE Transactions on Image Process, 12(11): 1338–1351.

Prendes, J., Chabert, M., Pascal, F., Giros, A  & Tourneret. J. (2015). A new multivariate statistical modelfor change detection in 
images acquired by homogeneous andheterogeneous sensors,” IEEE Transactions on Image Process-ing, 24(3): 799–812.

Rabbani, H. (2009). Image denoising in steerable pyramid domain based on a local Laplace prior, Pattern Recognition, 42(9): 
2181–2193.

Remenyi, N., Nicolis, O., Nason, G. & Vidakovic, B. (2014). Image Denoising With 2D Scale-Mixing Complex Wavelet 
Transforms, IEEE Transactions on Image Processing, 23(12): 5165-5174.



Dual Stage Bayesian Network with Dual-Tree Complex Wavelet Transformation for Image Denoising176

Sable, A.H  & Jondhale, K.C. (2010). Modified Double Bilateral Filter for Sharpness Enhancement and Noise Removal.

Selesnick, I.W., Baraniuk, R.G. & Kingsbury, N.G. (2005). The Dual-Tree Complex Wavelet Transform, IEEE SIGNAL 
PROCESSING MAGAZINE, pp. 123-150.

Shang, L., Su, P. and Liu, T. (2012). Denoising MMW image using the combination method of contourlet and KSC shrinkage, 
Neurocomputing, 83: 229-233.

Song, C., Deng, H., , Gao, H., Zhang, H. & Zuob, W. (2016). Bayesian non-parametric gradient histogram estimation for texture-
enhanced image deblurring, Neurocomputing, 197: 95–112.

Srivastava, R. (2014). Performance measurement of image processing algorithms. Professor, Department of Computer Science & 
Engineering, IIT BHU, India,.

Storvik, B., Storvik, G  & Fjortoft, R. (2009). On the combi-nation of multisensor data using meta-gaussian distributions,”IEEE 
Transactions on Geoscience and Remote Sensing, 47(7): 2372–2379.

Su, L., Gong, M., Zhang, P., Zhang, M., Liu, J  & Yang, H. (2017). Deep learning and mapping based ternary change detection 
for information unbalanced images,”Pattern Recognition, 66: 213–228.

Sun, D., Gao, Q., Lu, Y., Huang, Z. & Li, T. (2014). A novel image denoising algorithm using linear Bayesian MAP estimation 
based on sparse representation, Signal Processing, 100: 132–145.

Sunil, B.S., Manjunath, A.S., Christopher, S. & Menon, R.L. (2016). Motion-compensated adaptive dual tree complex wavelet 
transform coding for scalable color video compression using SPIHT, 9: 47-57.

SunilKumar, B.S., Manjunath, A.S., Christopher, S. & Menon, R. (2016). Enhanced Scalable Video Coding Technique with an 
Adaptive Dual- Tree Complex Wavelet Transform, Procedia Computer Science, 85: 70-77.

Touati, R  & Mignotte, M. (2018). An energy-based modelencoding nonlocal pairwise pixel interactions for multisensorchange 
detection,” IEEE Transactions on Geoscience and Re-mote Sensing, 56(2): 1046–1058.

Tuia, D., Marcos & G., Camps-Valls. (2016). Multi-temporal and multi-source remote sensing image classificationby nonlinear 
relative normalization,” ISPRS Journal of Pho-togrammetry and Remote Sensing, 120: 1–12.

Volpi, M., Camps-Valls, G  & Tuia, D. (2015). Spec-tral alignment of multi-temporal cross-sensor images with au-tomated kernel 
canonical correlation analysis,” ISPRS Journalof Photogrammetry and Remote Sensing, 107: 50–63.

Wagh & Todmal. (2015). Eyelids, Eyelashes Detection Algorithm and Hough Transform Method for Noise Removal in Iris 
Recognition”, International Journal of Computer Applications, 112(3).

Wang, X.Y. & Kai Fu, Z. (2010). A wavelet-based image denoising using least squares support vector machine, Engineering 
Applications of Artificial Intelligence, 23(6): 862-871.

Wang, X.Y., Yang, H.Y. & Kai Fu, Z. (2010). A New Wavelet-based image denoising using undecimated discrete wavelet 
transform and least squares support vector machine, Expert Systems with Applications, 37: 7040–7049.

Wang, X.Y., Yang, H.Y., Zhang, Y. & Kai Fu, Z. (2013). Image denoising using SVM classification in nonsubsampled contourlet 
transform domain, Information Sciences, 246: 155-176.

Wong, A., Mishra, A., Zhang, W., Fieguth, P. & Clausi, D.A. (2011). Stochastic image denoising based on Markov-chain Monte 
Carlo sampling, Signal Processing, 91(8): 2112-2120.

Xin, Z. & Jiangtao, Q. (2011). De-noising of GIS UHF Partial Discharge Monitoring based on Wavelet Method, Procedia 
Environmental Sciences, 11: 1302-1307.

Yan, F., Cheng, L. & Peng, S. (2008). A new interscale and intrascale orthonormal wavelet thresholding for SURE-based image 
denoising, IEEE Transactions on Signal Processing Letters, 15: 139–142.

Yang, H.Y., Wang, X.Y. & Kai Fu, Z. (2012). A new image denoising scheme using support vector machine classification in 
shiftable complex directional pyramid domain, Applied Soft Computing, 12(2): 872-886.

YueSi, Zhang, Z., Wang, H. & Yuan, F. (2016). Mono modal feature extraction for bonding quality detection of explosive clad 
structure with optimized dual-tree complex wavelet transform, Journal of Sound and Vibration.

Zhang, P., Gong, M., Su, L., Liu, J  & Li, Z. (2016). Change detection based on deep feature representation and mapping 



177P.Venkata Lavanya, C.Venkata Narasimhulu and K.Satya Prasad

transformation for multi-spatial-resolution re-mote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, 
116: 24–41. 

Zhang, W. (2013). Image denoising algorithm of refuge chamber by combining wavelet transform and bilateral filtering, 
International Journal of Mining Science and Technology, 23(2): 221-225.

Zhao, W., Wang, Z., Gong, M  & Liu, J. (2017). Discriminative feature learning for unsupervised change detectionin 
heterogeneous images based on a coupled neural network,”IEEE Transactions on Geoscience and Remote Sensing.

Submitted: 28/12/2017
Revised:     01/05/2019
Accepted:   02/05/2019



Dual Stage Bayesian Network with Dual-Tree Complex Wavelet Transformation for Image Denoising178

 WOzUM��« …d�A�« Í– bIF*« w��u*« q�u���« l� WK�d*« WOzUM� Íe�U� WJ�	 Â«b���«

—uB�« g�uA�  qOKI��

œU�«d� UO�U�***Ë u�uNLO�«—U� U�UJMO�** ¨UO�U�ô U�UJMO�*
bMN�« ¨g�œ«d� «—b�√ ¨«œUMO�UJ� WO�u�uMJ��« ËdN� ‰ôd�«u� WF�U� ¨U�Ë—Ë_ W�œUB��ô« WM�K�« r��*
bMN�« ¨U�U$öO� ¨œU�√ —bO� ¨UO�u�uMJ��«Ë W�bMNK� w�U$U�O� WOK� ¨U�Ë—Ë_ W�œUB��ô« WM�K�« r��**

bMN�« ¨g�œ«d� «—b�√ ¨—u��u� ¨Y���«Ë UO�u�uMJ��«Ë ÂuKFK� s�O� W��R�***

W�ö)«

 ·ö)« q� ¨—uB�« W'UF� UO�u�uMJ� w� p�c�Ë ÆWHK��*« WO�bMN�« ÷ËdF�« w� ÎU�uO� Î«—Ëœ VFK� —uB�« s� g�uA��« W�«“≈

 È«“U$≈ s
 g�uA��« W�«“ù ‚dD�« iF� XHA� ¨WO{U*« œuIF�« Èb� vK
 Æ ÎULzU� …—uB�« s� g�uA��« W�«“≈ È«¡UB�≈ ‰u�

 Y���« «c� ÊS� ¨W��U��*« dO�Ë jzU�u�« …œbF�� —uB�« s� g�uA��« W�«“≈ w� …dO�� ÈUL�U�� œu�Ë ÂbF� Î«dE�Ë Æ‚bB� ô

 d�bI� r�� w��« —uB�« q�u��� ©DT-CWT® WOzUM��« …d�A�« Í– bIF*« w��u*« q�u���« Â«b���« - Æp�c� w�– ZN� ÷dF�

 Ã«d���« - ¨W��U��*« dO� —uB�« s� g�uA��« W�«“≈ WOKL
 cOHM� ÊULC�Ë Æ©BR® Íe�U� rOEM� Â«b���U� UN�U��u� ÈULKF�

 —bI�  Íc�«Ë ¨BR  Ã–u/ d�uD��  g�uA��«  nO
  l�  …—uB�«  hzUB�  Z�œ - ¨p�– bF�  ÆWO��u*«Ë WOzUB�ù« hzUB)«

 ÆBR s� 5�K�d� Âb���� W�d�IÔ*« g�uA��« W�«“≈ WO�“—«u� ÊS� ¨w�U��U�Ë Æ‰UF� qJA� g�uA��« W�«“ù ÈU��u*« Èö�UF�

 Í– bIF*« w��u*« q�u��K�  W��UM*«  ÈU��u*« Èö�UF�  —bI�  WO�U��«  WK�d*« Ê√  5�  w�  ¨…—uB�«  Ÿu�  v�Ë_« WK�d*« l�u��

 Æ©GA® WOMO'«  WO�“—«u)« WD�«u�  DT-CWT  d�K�  Èö�UF�  5�% - ¨WO�Oz—  WL�U�L�  Æg�uA��«  W�«“ù WOzUM��«  …d�A�«

 5����«  ”UOI�  w�U��«  ‚UI�	ô« ¨©PSNR® g�uA��«  v�≈  …—U	ù« WL�  W���  ”UOI�  WD�«u�  Õd�IÔ*«  Ã–uLM�«  ¡«œ√  qOK% -

 oKD*« j�u�*«  QD�  ¨©RMSE® wFO�d��«  —c'« QD�  ¨©MSE®   j�u�*«  lO�d��«  QD�  ¨©SSIM® wKJON�«  t�UA��«  ¨©SDME®

 Ã–uLM�« W�—UI� -Ë Æw�«u��« vK
 ©SMAPE® t�UA��   j�u�* WIKD*« W�u�*« W��M�« QD�Ë ¨©PC® Êu�dO� q�UF�Ë ¨©MAE®

 u�  —uD*« Ã–uLMK�  PSNR  Ê√  qOK���«  s�  k�u�Ë ÆÕu{u�  — ÒÓuD*« Ã–uLM�«  WOL�√  `O{u�  -Ë ¨W�bOKI��«  Ã–ULM�U�  Õd�IÔ*«

DT- ¨DT-CDWT ¨DT-CWT ¨2D SMCWT s� qC�√  %46.44 Ë %46.40 ¨%33.38 ¨%76.91 ¨%5.85 ¨%69.97
 ‚dD�« vK
  dO��  ·«d��« t�  Õd�IÔ*« Ã–uLM�« ÊS�  ¨SSIM  ”UOI�  W��M�U�  q�*U�Ë Æw�«u��« vK
  ¨W-HT Ë  W-ST ¨RDWT
 ¨ DT≠RDWT ¨ DT-CDWT ¨ DT-CWT s� qC�√ %73.15Ë %72.99 ¨%24.65 ¨%83.66 ¨%19.17 u�Ë ¨W�bOKI��«

Æw�«u��« vK
 ¨W-HTË W- ST


