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1. Introduction  

In recent years, the idea of using a mathematical model to describe the behavior of physical phenomena has been 

very much considered. Specifically, a definitive model, based on physical laws, enables researchers to calculate the 

number of time dependencies precisely at any moment in time. However, in the real world, we often face time-

dependent phenomena with many unknown or unavailable factors (Lindley, 2010; Roulston et al., 2003). In this 

case, when it is not possible to achieve a definite model, the prediction methods are wide - used, especially when the 

past observations of a variable and primary relationships between specific  observations are available.  Forecasting 

methods that are used in different fields of science can be categorized based on various aspects. For example, the 

prediction methods used in the field of wind energy can be divided into four categories of 1)  ultra short term 

(several seconds to four hours), 2) short term (4 to 24 hours), 3) medium-term (1 to 7 days),  and 4) long term (more 

than 7 days) (Zack, 2003; Soman et al., 2010). Also, the structure of forecasting methods can be divided into 

two  types of 1) single methods and 2) hybrid methods. Each of these categories can also be subdivided into  smaller 

subgroups.  

For example, single methods can be divided into three subclasses of 1) physical methods, 2) statistical  methods, 

and 3) intelligent methods; and hybrid methods can be divided into four subcategories of 1) data  preprocessing 

based approaches, 2) parameter optimization-based approaches, 3) postprocessing based  approaches, and 4) 

component-based in series or parallel approaches.  The physical methods are based on the numerical weather 

prediction models and using some data such as surface roughness, orography, obstacles, pressure, and temperature 

to estimate the local wind power, speed, and direction (Lange et al., 2008). The physical approaches use more 

accurate physical descriptions for modeling in comparison to statistical approaches (Kariniotakis et al., 2004; Lange 
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et al., 2006). Marjanovic et al. (Marjanovic et al. 2014) have introduced a weather research and forecasting (WRF) 

model for 48h-ahead wind power forecasting. The simulation results show a significant improvement. Traditional 

statistical methods such as quantile regression models (Wang et al., 2019; Nathaniel et al., 2018; Wang et al., 2018; 

Lahouar et al., 2017; Zhang et al., 2015; Bessa et al., 2012), time series models (Jakob et al., 2018; Roblesï

Rodriguez & Dochain, 2018; T. Filik & U. Filik, 2017; Ziel et al., 2016; Lydia et al., 2016; Guo et al., 2014), grey 

models (Kou et al., 2014; Kou et al., 2013; RamirezïRosado et al., 2009), stochastic differential equations models 

(Xydas et al., 2017; Iversen et al., 2016), and Markov regime-switching models (Carpinone et al., 2015; Song et al., 

2014; DôAmicoa et al., 2014) are among the most important and more popular methods, which extensively used to 

wind power and speed forecasting.  

The SARIMA model for 24 hours of wind speed forecasting is provided (Bivona et al., 2011). In this study, 

wind speed time series in two regions of Italy are used to test the proposed model, whose numerical results show the 

efficiency of the SARIMA model. The Hammerstein Auto-Regressive model (HAR) for 1-24 hours wind speed 

forecasting is used (Maatallah et al., 2015). The proposed model is applied to real data from two different sites. The 

results show that the proposed HAR model is better than ARIMA and MLP models in terms of different indicators 

such as RMSE, MAE, and MAPE. Despite all the statistical modelôs advantages, they have several disadvantages 

and limitations, such as the inability to model nonlinear, complex, and multiple structures. These limitations 

encourage researchers to develop intelligent methods to address the defects of statistical models. Many researchers 

have developed intelligent methods due to their unique features in modeling complex nonlinear patterns in 

underlying data. Intelligence approaches, such as artificial neural networks (Wang et al., 2018; Yu et al., 2018; 

Ahmed & Khalid, 2018; He & Li, 2017; Wang et al., 2017) fuzzy sets and systems (Dong et al., 2017; Taslimi 

Renani et al., 2016), and support vector machines (Hu et al., 2014; Yang & Zhao, 2012), have been developed and 

frequently applied for wind power, speed, and direction forecasting.  

The LRNN model for short-term wind power and speed forecasting is used (Olaofe et al., 2014). Empirical 

results indicate that the proposed model can yield more accurate results than others. The NESN-P and NESN-MP 

models for medium-term wind speed and direction forecasting are used (Chitsazan et al., 2019). To demonstrate the 

efficiency of the proposed methods, they have compared with ESN and adaptive neuro-fuzzy inference system 

(ANFIS).  Intelligent methods are a universal approximation to modeling and analyzing systems with appropriate 

accuracy to lifting the linear limitation of  statistical approaches.  However, many studies indicate that artificial 
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neural networks may be incompatible and inaccurate in some specific situations (Khashei & Bijari, 2010). 

Generally, both statistical and intelligent single models, despite their unique features and specifications, have a 

critical limitation to modeling and providing accurate results.  

In other words, by using a single model, a specific part of the patterns and relationships in the raw data 

is  modeled. Therefore, using a single model may increase the risk of using an inappropriate model for modeling 

(Khashei & Bijari, 2011). Recently, researchers have more focused on hybrid models in order to yield more 

comprehensiveness and  consequently achieve more accuracy and low risk in time-series forecasting. In other words, 

the main idea of hybrid methods is to take advantage of single models simultaneously for more comprehensive, 

accurate, and less risk modeling. Hybrid methods can be categorized into different categories the 1) data 

preprocessing based hybrid models (DAH), 2) parameter optimization based hybrid models (PAH), 3) 

postprocessing based hybrid models (POH), and 4) components combination based hybrid models (CCH). Data 

preprocessing-based hybrid models decompose wind data into smooth and regular parts that are easily identifiable, 

and then each decomposed segment provides an appropriate prediction before combining with the predicted models. 

A new data preprocessing-based hybrid technique based on VMD, and MKRR model  for 10 min, 30 min, and one-

hour wind power and speed forecasting is used (Naik et al., 2018). In this paper, the original wind speed and  power 

data have been decomposed by VMD decomposed model; then, decomposed patterns have been used as input 

for  the MKRR model.  Parameter optimization-based hybrid models, as well as postprocessing-based hybrid models, 

have a significant contribution in increasing the accuracy of wind forecasts.  

A new parameter optimization-based hybrid technique, HAP-ACO-PSO, for ultra-short-term wind power 

forecasting is used (Rahmani et al., 2013). The hourly wind power of the Binaloud wind farm has been collected 

and used to train and test the developed model. A postprocessing-based hybrid model with an error feedback 

scheme (IRBFNN-EF) for short-term wind power and speed forecasting is provided (Chang et al., 2017). In this 

study, a selected day in 2014 is used to test the proposed model and four other compared models. Another widely-

used hybrid approaches are models that combine two or more single models or components in series or parallel 

structures to achieve higher accuracy in prediction (Khashei et al., 2013). A series-based hybrid model, based on 

integrating machine learning techniques and physical knowledge modeling (grey-box) for short-term wind speed 

forecasting is provided (Vaccaro et al., 2012). A parallel-based hybrid model, the KF-ANN model for daily wind 
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speed forecasting is proposed (Shukur & Lee, 2015). In this study, daily wind speed data from Iraq and Malaysia is 

used. Some other hybrid methods for wind power and speed forecasting are stated in Table (1).  

As mentioned previously, hybrid structures can be categorized into different categories. The literature 

demonstrates  that the data preprocessing-based hybrid models are the most popular and widely-used method among 

other  hybrid models (Liu & Chen, 2019).  Because after the preprocessing techniques, the high-frequency sub-

signals are extracted in order to smooth the raw data, so the prediction accuracy increases. However, the difference 

of the preprocessing-based hybrid model in this article with other data preprocessing-based hybrid models in the 

literature is that both trend and residual patterns are simultaneously used. On the other hand, the main idea of the 

proposed hybrid model is that the residual data that has been considered as noise in other hybrid models and not 

used in the modeling is considered as input data. The reason is that it may enclose beneficial information and 

patterns for modeling; so, by eliminating this information, the accuracy of modeling may be reduced. 

Table (1): Some recent proposed hybrid models for wind power and speed forecasting. 

[Ref.] Year Domain Time-scale Applied Model(s) Technique(s) 

Jiang et al. 2019 Wind power Ultra short term PICP, LSSVM PAH 

Chen et al. 2019 Wind speed Ultra short term QPSO, LSSVM PAH 

Zhang et al. 2019 Wind speed Ultra short term OSO, RELM-C PAH 

Jiang et al. 2019 Wind speed Ultra short term PSO, MODE-FTS PAH 

Jiang et al. 2018 Wind speed Ultra short term CS, V-SVM PAH 

Liu et al. 2018 Wind speed Ultra short term GWO, RELM PAH 

Liu et al. 2018 Wind speed Ultra short term WF, BFGS POH 

Wang et al. 2018 Wind speed Ultra short term ARIMA, ELM  POH 

Li  et al. 2018 Wind speed Ultra short term RELM, LSTM POH 

Jiang et al. 2018 Wind speed Medium-term NWP, GPR CCH 

Akçay & Filik  2018 Wind speed Ultra short term LSSVM, GARCH CCH 

Liu et al. 2018 Wind power Short term ARIMAX, PR CCH 

Hu & Chen 2018 Wind speed Ultra short term LSTM, ELM CCH 

Yu et al. 2018 Wind speed Ultra short term LSTMDE, HELM CCH 

Jiang & Li  2018 Wind speed Ultra short term RNN, SVM, LSTM CCH 

Sun et al. 2017 Wind speed Short term KPCA, CVR, COR DAH 
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Wang et al. 2017 Wind speed Ultra short term CEEMD, ENN DAH 

Wang et al. 2017 Wind speed Ultra short term VMD, GAWNN DAH 

Ma et al. 2017 Wind speed Ultra short term SSA, GDFNN DAH 

Chang et al. 2017 Wind Power short term EF, IRBFNN POH 

Cassola & Burlando  2017 Wind speed short term ARMA, KF CCH 

Aghajani et al. 2016 Wind power Short term WT, HNN DAH 

Azimi et al. 2016 Wind power short term DWT, HANTS, MLPNN DAH 

Shao & Deng 2016 Wind power Ultra short term MADF, LLE DAH 

Lynch et al. 2014 Wind Speed Ultra short term KF,YR.NO NWP POH 

Zhao et al. 2012 Wind speed Long term NWP, KF CCH 

Also, a parallel structure is a comprehensive modeling and can produce more accurate and low-risk forecasting 

models. The literature shows that the combination of components in the parallel form is generally more usual and 

more accurate than the combination in series (Hajirahimi & Khashei, 2019). Accordingly, the key goal of this paper 

is to propose a hybrid approach that can simultaneously cover linear/nonlinear, trend/residual, and different 

hybridization structures; and also can yield accurate forecasts. For this reason, in the proposed model, the 

underlying raw data sets are considered to be composed of trend and residual patterns that can be decomposed by 

the Kalman filter. 

2. The proposed parallel trend-residual (PTR) hybrid model 

The prediction of time series based on combined modeling has been one of the most important research areas in 

recent years. Hybrid models have been used to improve forecasting accuracy by combining the benefits of 

individual forecasting models, as well as omitting their disadvantages in forecasting. Combined models in the 

subject literature, basically, include the combination of different prediction models under series or parallel structures 

and can also be the combination of various prediction models with preprocessing and/or postprocessing techniques. 

The data preprocessing method is the widely-used approach in modeling. The reason for the extensive applications 

of the preprocessing methods is that the raw data is analyzed for irrelevant and redundant information, noisy and 

unreliable data, outlier data, etc., before entering into the forecasting process. Because of this, the use of 

preprocessing techniques can increase the accuracy of predictions. But in the subject literature, residual data in the 

preprocessing processes is completely excluded and is considered as noise in the modeling and forecasting 
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procedure. Consequently, the main idea of our proposed hybrid model is to use 1) the residual data in the proposed 

model, 2) different hybridization structures, 3) linear and nonlinear modeling in order to increase the 

comprehensiveness of modeling and prediction accuracy. In general, the difference between our proposed model 

and the subject literature can be summarized as follows: 

1. In classical structures based on the data preprocessing technique, only the trend data from the data preprocessing 

process is entered into the prediction model. However, in the proposed method, trend data and residual data are 

simultaneously considered as input variables in the prediction procedure. Accordingly, if the data obtained from 

the studied system involves dynamic multiple-trend structures, the proposed model can better model them. 

2. In the classical structures in the subject literature, raw data, or the only data from the data preprocessing process, 

is used in the prediction model. However, in the proposed method, the raw data, trend data, and residual data 

and their lags are simultaneously entered into the prediction model. Accordingly, if the preprocessed data of the 

studied system still contains specific modelable patterns, the proposed model can model more patterns. 

3. In the classical structures based on the data preprocessing, the preprocessed data do not enter the final model 

separately. However, in the proposed method, the preprocessed data are also used as input of the prediction 

model. 

4. In the classical hybrid approaches, only the parallel combination of different forecasting models with the same 

inputs, in general, are used. However, in the proposed method, in addition to using three different components, 

including the Kalman filter, the multilayer perceptron, and autoregressive integrated moving average with 

explanatory variable models, the similar models with different inputs are also combined in the parallel form. By 

doing so, more emphasis can be placed on the fundamental patterns and relationships in the modeling process. 

In this way, considering the autoregressive integrated moving average with explanatory variable, the multilayer 

perceptron as prediction models, and the Kalman filter as a data preprocessing method, the overall structure of the 

proposed method is presented in Fig. (1). The steps of the proposed method can be summarized as follows: 

Stage I: Data Preprocessing technique: In the first stage of the proposed method, the raw data is decomposed by 

the Kalman filter technique. The Kalman filter could be described as an approach consisting of two decomposing 

stages. The decomposing patterns are given by Eq. (1). 

)1( 
T R

t t tY Y Y= + 
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where, tY  is the output of the Kalman filter, T

tY  is the decomposing trend patterns, and R

tY  is the residual 

decomposing patterns. 

Stage II: Linear Trend/Residual Modeling: In the second stage of the proposed model, at first, the raw data and 

decomposed trend patterns from the previous  stage are included in the autoregressive integrated moving average 

with explanatory variable (ARIMAX)  model in order to model the linear trend correlation structures in the 

underlying data sets. Then, the raw data  and decomposed residual data are used in the ARIMAX model in order to 

model the remained modelable  linear correlation structures in the underlying data that are left as noise in the 

residuals.  

Fig. (1): The overall structure of the proposed model. 

The ARIMAX model is similar to a multivariate regression model but also allows us to take advantage of 

autocorrelation that may be present in residuals of the regression to improve the accuracy of a forecast. Or, as 

another viewpoint, The ARIMAX model is an Auto-Regressive Integrated Moving Average (ARIMA) model that 

also consists of the exogenous entrance, besides its autoregressive (AR) and moving average (MA) parameters. In 

this way, the ARIMAX model can be explained as the combination of the Autoregressive ( AR( p )), Integrated 
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(d), Moving Average ( MA( q )) , and Exogenous X(r)  variables, which is often represented by 

ARIMAX(p,d,Q,r). A simplified form to represent this model is described in Eq. (2). 

)2( 

p q m

t i t i j t j j j t

i 1 j 1 j 1

Z zb f q e x j e- -

= = =

= + + + +ä ä ä 

where 
tZ  is a dependent variable at the time t , b is a constant; 

t 1Z -
 is a dependent variable (lagged by the time 

steps, i ; if is a coefficient of 
t 1Z -

; p  is the maximum number of time intervals; 
jj  represents the exogenous 

variables (in this case, trend data, wind power data); 
jx  represents the coefficients of the exogenous variables; q  is 

the maximum number of exogenous variables; 
jq  is the coefficient of the term 

t je- , which represents the error in 

the time t  lagged from j . Finally, te is the error component of the model with 2

t N(0, )e sÍ . The coefficients of 

the models are estimated by regression (Khashei et al., 2009). 

Stage III : Nonlinear Trend/Residual Modeling: Since the ARIMAX model cannot model the nonlinear correlation 

structures, in the next stage of the proposed model, a multilayer perceptron (MLP) is used in order to model the 

nonlinear, trend and residual correlation structures in the underlying data sets as follows (Zendehboudi, 2016): 

)3( ( )
qP

i ,t j kj i ,t k t

j 0 k 0

Y W g W Y i 1,2,...,N , t 1,2,...,Te-

= =

å õ
= Ö + = =æ ö

ç ÷
ä ä 

where, jw  and kjw are connection weights, q  is the number of input nodes and p  is the number of hidden nodes. 

Stage IV: Parallel combination: In the last step of the proposed model, the final prediction of the proposed model is 

calculated from the results of all components and their weights in the parallel structure by Eq. (4). 

1 2 3 4 5Total TMLP TARIMAX KF RARIMAX RMLPy W y (t) W y (t) W y (t) W y (t) W y (t)= + + + +  
(4) 

where, 
TMLPy (t) and 

TARIMAXy (t)  are the prediction of the MLP and ARIMAX models for trend data at the time t , 

respectively. In the similar, the 
RARIMAXy (t) and 

RMLPy (t)  are the forecasting of the ARIMAX and MLP models for 

residual data at the time t , respectively. The 
KFy (t)  is the Kalman filter model output value at the time t  and 

iw (i 1,2,...,5 )=  are the weights of components. In this paper, these weights are estimated by the ordinary least 

squares method (Chahkoutahi & Khashei, 2017). 

3. Applying the proposed method to predict wind power 
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3.1. Data sets 

In this section, in order to evaluate the accuracy of the proposed model and calculate its performance against 

other methods, 2 wind power and speed data sets are used. The first data set is hourly wind power data from a wind 

power plant located in Spain has been used. This hourly data set consists of 168 points that show in Fig. (2). The 

85% of data (e.g., 144 observations) is applied as the training sample, and 15% of the remaining data (e.g., 24 

observations) is used as the test sample in order to evaluate the performance of different models. The second data 

set is the wind speed data set, which is gathered every 5 min in the Colorado State on 09/02/2012 from 00:00 to 

14:00, and totally consists of 169 points. Approximately, the first 80% of data (e.g. 133 observations) is applied as 

the training sample, and 20% of the remaining data (e.g., 36 observations) is used as the test sample. These data sets 

are among the most widely used benchmark data sets in the field of wind forecasting, which has been frequently 

used in the literature (Azimi et al. 2016). 

 

Fig. (2): The wind power data sets. 

3.2. Performance Evaluation Criteria 

The results presented in this paper are based on some evaluation criteria related to the outputs of 1) Kalman filter 

model, 2) trend ARIMAX model, 3) trend MLP model, 4) residual ARIMAX model, 5) residual MLP model, 6) and 

the proposed hybrid model. In this paper, different indicators such as MAE (Mean Absolute Error) and RMSE (Root 

Mean Squared Error) are used, which are calculated as follows: 

)5( 

N

t
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1
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where, te  and 
tA (t 1,2,...,m )=  are forecast error and forecasted value at time t, respectively, and N  is the 

number of total underlying data. 

4. Results of the proposed model 

In this section, the first wind power data set is used to design different models as well as the proposed model. 

After designing each model using training data, the performance of the models is calculated using the criteria 

mentioned above based on the test data, and ultimately a comprehensive assessment of the methodsô performance 

compared with each other in the training and the test data has been made.  

 

4.1. Results of the Data Preprocessing technique (Stage I: Kalman Filter)  

Following the process of the proposed method, the Kalman filter model is first used for preprocessing input data. 

The trend and residual pattern obtained from the Kalman filter are shown in contrast to the actual data in Fig. (3). 

 

Fig. (3): Trend and residual pattern in contrast to the actual data. 

4.2. Results of the Trend/Residual Linear Modeling (Stage II: Trend/Residual and Autoregressive Integrated 

Moving Average with Explanatory Variable models)  

i) The trend patterns in the data and the relevant lags, along with the raw data, are entered into the autoregressive 

integrated moving average with explanatory variable (TARIMA X) model. The results of this model are obtained 

using the Eviews package software. The estimation of the TARIMA X model using evaluation characteristics 
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(absolute error (AE) and squared error (SE)) are illustrated in Fig. (4). The performance of the TARIMA X model is 

extensively presented in Table (2).  

 

 

 

 

Fig. (4): The performance of the TARIMAX  for test data. model

Table (2): The performance of the TARIMAX model results in the test day. 

Time (h) 

 Evaluation Criteria  

Time (h) 

 Evaluation Criteria 

 AE SE  AE SE 

1:00  8.40×104 7.13×109  13:00  2.40×105 5.76×1010 

2:00  1.60×105 2.56×1010  14:00  4.50×104 2.07×109 

3:00  1.16×105 1.36×1010  15:00  4.90×104 2.41×109 

4:00  1.69×105 2.87×1010  16:00  3.60×104 1.33×109 

5:00  1.44×105 2.09×1010  17:00  5.50×104 3.03×109 

6:00  1.08×105 1.18×1010  18:00  6.00×104 3.60×109 

7:00  1.63×105 2.66×1010  19:00  1.10×105 1.22×1010 

8:00  1.30×105 1.70×1010  20:00  1.20×105 1.45×1010 

9:00  6.00×104 3.69×109  21:00  8.05×104 6.49×109 

10:00  5.00×104 2.50×109  22:00  7.76×104 6.03×109 

11:00  3.49×105 1.22×1011  23:00  4.73×104 2.24×109 

12:00  9.70×104 9.59×109  24:00  8.90×104 8.00×109 

MAE  1.10×10
5  RMSE  1.31×10
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Results of Table (2) indicate that the TARIMA X model can achieve 1.10×105 and 1.31×105 in the MAE and 

RMSE in the whole test day, respectively. The errors of the TARIMA model for training and test data sets are also 

shown in Fig. (5).  

 

Fig. (5): The errors of the TARIMA X model for training and test data sets. 

ii)  In the next stage of step 2, the residual patterns in the data and the relevant lags, along with the raw data, are 

entered into the Autoregressive Integrated Moving Average with the Explanatory Variable (RARIMA X) model. The 

performance indicators of the designed RARIMA X model are shown in Fig. (6). The performance of the 

RARIMAX model is extensively presented in Table (3). 

  

Fig. (6): The performance of the RARIMAX model for test data. 

Table (3): The performance of the RARIMAX model results in the test day. 

Time (h) 

 Statistical Characteristics  

Time (h) 

 Statistical Characteristics 

 AE SE  AE SE 

1:00  1.38×105 1.91×1010  13:00  1.64×105 9.57×109 
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2:00  2.43×105 5.91×1010  14:00  9.78×104 2.73×109 

3:00  1.29×105 1.66×1010  15:00  5.22×104 1.56×1010 

4:00  5.43×104 2.95×109  16:00  1.25×105 1.40×109 

5:00  2.08×105 4.36×1010  17:00  3.74×104 1.44×1010 

6:00  6.97×104 4.87×109  18:00  1.19×105 7.00×107 

7:00  3.11×105 9.70×1010  19:00  8.57×103 4.91×109 

8:00  8.15×104 6.65×109  20:00  7.00×104 2.36×1010 

9:00  5.18×104 2.69×109  21:00  1.53×105 2.00×107 

10:00  4.34×104 1.89×109  22:00  5.44×103 8.20×109 

11:00  3.11×105 9.68×1010  23:00  9.05×104 1.86×109 

12:00  1.38×105 2.69×1010  24:00  4.30×104 4.29×1010 

MAE  1.17×10
5  RMSE  1.45×10

5
 

Results of Table (3) indicate that the RARIMAX model can achieve 1.17×105 and 1.45×105 in MAE, and RMSE 

in the whole test day, respectively. The errors of the RARIMA X model for training and test data sets are also shown 

in Fig. (7).  

Fig. (7): The errors of the RARIMA X model for training and test data sets. 

4.3. Results of the Trend/Residual Nonlinear Modeling (Stage III: Trend/Residual and Multi layer Perceptron 

models)  

i) The MLP is the nonlinear model that is sketched in the proposed model. Similar to the previous stage, the 

trend pattern in the data and the relevant lags, along with the raw data, are entered into the Multi layer Perceptron 

model. The results of this model are obtained using the Matlab package software. The estimation of the TMLP 

model is presented in Fig. (8). The results of the TMLP model are expansively reported in Table (4).  
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Fig. (8): The performance of the TMLP model for test data. 

 

 

Table (4): The performance of the TMLP results in the test day. 

Time (h) 

 Evaluation Criteria  

Time (h) 

 Evaluation Criteria 

 AE SE  AE SE 

1:00  6.32×104 4.00×109  13:00  1.79×105 3.24×1010 

2:00  1.20×105 1.44×1010  14:00  3.40×104 1.16×109 

3:00  8.72×104 7.61×109  15:00  3.60×104 1.36×109 

4:00  1.27×105 1.61×1010  16:00  2.72×104 7.45×108 

5:00  1.08×105 1.18×1010  17:00  4.13×104 1.71×109 

6:00  8.13×104 6.62×109  18:00  4.50×104 2.03×109 

7:00  1.22×105 1.50×1010  19:00  8.27×104 6.86×109 

8:00  9.78×104 9.58×109  20:00  9.03×104 8.17×109 

9:00  4.56×104 2.08×109  21:00  6.04×104 3.66×109 

10:00  3.74×104 1.40×109  22:00  5.80×104 3.39×109 

11:00  2.62×105 6.88×1010  23:00  3.50×104 1.27×109 

12:00  7.34×104 5.40×109  24:00  6.69×104 4.49×109 

MAE  8.27×10
4
  RMSE  9.79×10

4
 

Results of Table (4) indicate that the TMLP model can achieve 8.27×104 and 9.79×104 in MAE, and RMSE in 

the whole test day, respectively. The errors of the TMLP model for training and test data sets are also shown in Fig. 
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(9). These results indicate that the MLP model can achieve more accurate and more reliable results than ARIMAX. 

It demonstrates that the underlying data set consists of the linear patterns and structures, in addition to nonlinear 

ones. Thus, the classic ARIMAX model is inadequate for modeling and cannot comprehensively and appropriately 

model all existing patterns and structures in the data.  

 

Fig. (9): The errors of the TMLP model for training and test data sets. 

ii) In a similar process, the residual patterns in the data and the relevant lags, along with the raw data, are entered 

into the MLP model. The performance indicators of the designed TMLP model are shown in Fig. (10). The 

performance of the TMLP model is extensively presented in Table (5). 

  

Fig. (10): The performance of the RMLP model for test data 
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Table (5): The performance of the RMLP results in the test day. 

Time (h) 

 Statistical Characteristics  

Time (h) 

 Statistical Characteristics 

 AE SE  AE SE 

1:00  1.03×105 1.07×1010  13:00  6.00×103 5.38×109 

2:00  1.82×105 3.33×1010  14:00  3.90×104 1.54×109 

3:00  9.60×104 9.34×109  15:00  9.30×104 8.79×109 

4:00  4.00×104 1.66×109  16:00  2.80×104 7.90×108 

5:00  1.56×105 2.64×1010  17:00  8.90×104 8.10×109 

6:00  5.20×104 2.74×109  18:00  6.00×103 4.10×107 

7:00  2.35×105 5.45×1010  19:00  5.20×104 2.76×109 

8:00  6.10×104 3.74×109  20:00  1.15×105 1.33×1010 

9:00  3.80×104 1.52×109  21:00  4.00×103 1.60×107 

10:00  3.20×104 1.06×109  22:00  6.70×104 4.62×109 

11:00  2.33×105 5.44×1010  23:00  3.20×104 1.04×109 

12:00  1.23×105 1.52×1010  24:00  1.55×105 2.41×1010 

MAE  8.81×10
4
  RMSE  1.09×10

5
 

Results of Table (5) show that the RMLP model can achieve 8.81×104 and 1.09×105 in MAE, and RMSE in the 

whole test day, respectively. The errors of the RMLP model for training and test data sets are also shown in Fig. 

(11).  

 

Fig. (11): The errors of the RMLP model for training and test data sets. 
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According to the process of the proposed model and after modeling components, the weight of each component, 

i.e., trend ARIMA, residual ARIMA, trend MLP, residual MLP, and the Kalman filter, is calculated. After that, final 

forecasts of the proposed model are calculated by Eq. (11). These forecasting results using absolute and squared 

error values are presented in Fig. (12). The actual and fitted values of the proposed model for train and test day are 

shown in Fig. (13). Also, the evaluation metrics for the proposed model for test day are reported in Table (6).  

  

Fig. (12): The performance of the proposed model 

 

Fig. (13): Actual and fitted values of the proposed model for train and test data sets. 

Table (6): Results of the proposed model on a test day. 
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3:00  7.50×104 5.74×109  15:00  5.90×104 3.58×109 

9
.3

0
E

+
0

4 

4
.6

0
E

+
0

4 
7

.5
0

E
+

0
4 

2
.0

0
E

+
0

4 6
.1

0
E

+
0

4 
6

.0
0

E
+

0
3 

4
.9

0
E

+
0

2 
8

.6
0

E
+

0
3 

2
.9

0
E

+
0

4 

5
.9

0
E

+
0

4 
3

.4
9

E
+

5 
5

.0
0

E
+

0
4 

1
.5

0
E

+
0

5 
4

.9
0

E
+

0
4 

5
.9

0
E

+
0

4 
1

.8
0

E
+

0
4 5

.6
0

E
+

0
4 

3
.2

0
E

+
0

4 

2
.6

0
E

+
0

4 
5

.2
0

E
+

0
4 

6
.7

2
E

+
0

2 
5

.2
0

E
+

0
4 

3
.9

0
E

+
0

4 
3

.8
0

E
+

0
4 

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

1.60E+05

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 

PROPOSED(AE) 

8
.6

5
E

+
0

9 
2

.1
9

E
+

0
9 

7
.5

0
E

+
0

4 
4

.2
1

E
+

0
8 

3
.7

8
E

+
0

9 
3

.7
0

E
+

0
7 

2
.4

1
E

+
0

5 
7

.4
2

E
+

0
7 

8
.8

1
E

+
0

8 
3

.5
4

E
+

0
9 

3
.4

9
E

+
5 

2
.5

4
E

+
0

9 
2

.3
7

E
+

1
0 

2
.4

5
E

+
0

9 
3

.5
8

E
+

0
9 

3
.2

4
E

+
0

8 

3
.2

0
E

+
0

9 
1

.0
3

E
+

0
9 

6
.8

7
E

+
0

8 
2

.7
9

E
+

0
9 

4
.5

2
E

+
0

5 
2

.7
6

E
+

0
9 

1
.5

6
E

+
0

9 
1

.5
0

E
+

0
9 

0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 

PROPOSED(SE) 

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

Actual value Fited value



Journal of Engg. Research Online First Article 

 

18 
 

4:00  2.00×104 4.21×108  16:00  1.80×104 3.24×108 

5:00  6.10×104 3.78×109  17:00  5.60×104 3.20×109 

6:00  6.00×103 3.60×107  18:00  3.20×104 1.03×109 

7:00  4.90×102 2.00×105  19:00  2.60×104 6.87×108 

8:00  8.60×103 7.40×107  20:00  5.20×104 2.79×109 

9:00  2.90×104 8.81×108  21:00  6.72×102 4.51×105 

10:00  5.90×104 3.54×109  22:00  5.20×104 2.76×109 

11:00  6.80×104 4.65×109  23:00  3.90×104 1.56×109 

12:00  5.00×104 2.54×109  24:00  3.80×104 1.50×109 

MAE  4.59×10
4
  RMSE  5.36×10

4
 

Results of Table (6) show that the proposed model can achieve 4.59×104, and 5.36×104 in MAE, and RMSE in 

the whole test day, respectively. The error values of the proposed model for the train and test data sets are also 

shown in Fig. (14).  

 

Fig. (14): The errors of the proposed model for train and test data sets. 

4.5. Comparison with other those hybrid and individual models 

In this section, the performance of the proposed model is compared with some other individual and hybrid 

models using the 2 wind power and speed data sets. Evaluation criteria, e.g., MAE, and RMSE of the models in 

training and test data sets, are summarized in Table (7). Besides, the improvement percentage of the proposed model 

in comparison with those models is given in Table (8). In addition, Table (9) summarizes the improvement 

percentage of the proposed model against other classes of models as follows: 

1) SLM: Single linear model(s) (e.g., ARIMA),  

2) SNM: Single nonlinear model(s) (e.g., MLP), 
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3) STM: Single trend model(s) (e.g., TARIMAX, and TMLP), 

4) SRM: Single residual model(s) (e.g., RARIMAX, and RMLP), 

5) PLM: Preprocessing-based linear model(s) (e.g., KARIMAX), 

6) PNM: Preprocessing-based nonlinear model(s) (e.g., KMLP), 

7) SCM: Series-based components combination hybrid model(s) (e.g., ARIMA-MLP), 

8) PCM: Parallel-based components combination hybrid model(s) (e.g., ARIMA/MLP). 

Numerical results show that the proposed model in overall can improve averagely, 37.34 and 27.00 percentages 

in MAE, and 34.18 and 29.81 percentages in RMSE the performance of other individual and hybrid models in train 

and test data sets, respectively. The biggest value of these improvements is related to the ARIMA model that only 

can model the linear patterns and uses none of the trend and residual patterns of the preprocessing. The proposed 

model can achieve 46.73% in MAE and 46.37 % in RMSE improvement than the ARIMA. 

 

Table (7): Forecasting performance of different models in train and test data sets. 

Model  

Data 

Sets 

 MAE  RMSE 

 

Train 

 

Test  Train 

 

Test 

ARIMA   

S
o

ta
v
e

n
to

 D
a

ta
 S

e
t

 

2.11×105 1.47×105  2.99×105 1.75×105 

MLP   1.58×105  1.10×105  2.24×105  1.31×105 

TARIMAX    1.64×105  1.10×105  2.23×105  1.31×105 

RARIMAX    1.92×105  1.17×105  2.50×105  1.45×105 

TMLP   1.22×105  8.27×104  1.67×105  9.79×104 

RMLP   1.44×105  8.81×104  1.87×105  1.09×105 

ARIMA -MLP   8.34×104  5.78×104  1.05×105  6.93×104 

ARIMA/MLP    1.48×105  6.83×104  1.85×105  7.79×104 

KARIMAX    1.44×105  1.06×105  2.01×105  1.34×105 

KMLP   9.27×104  5.77×104  1.20×105  7.34×104 

Proposed model   6.64×10
4
  4.95×10

4
  8.64×10

4
  5.63×10

4
 

ARIMA   

C
o

lo
ra

d

o
 D

a
ta

 

S
e

t 

 1.034  1.016  1.307  1.228 

MLP   0.825  0.991  1.105  1.219 



Journal of Engg. Research Online First Article 

 

20 
 

TARIMAX    0.957  1.002  1.115  1.213 

RARIMAX    1.018  1.007  1.223  1.220 

TMLP   0.768  0.926  1.033  1.162 

RMLP   0.816  0.988  1.091  1.211 

ARIMA -MLP   0.947  0.987  1.077  1.189 

ARIMA/MLP    0.753  0.912  1.001  1.112 

KARIMAX    0.849  0.978  1.081  1.193 

KMLP   0.713  0.901  0.983  1.136 

Proposed model   0.651  0.863  0.912  1.027 

The second and third places are also related to the ARIMA model with the use of the preprocessed residual and 

trend data, respectively. The proposed model can reach 43.36% in MAE and 41.96% in RMSE improvement than 

the RARIMAX. It demonstrates that the idea of using residual patterns instead of ignoring them can be a more 

efficient strategy. The proposed model can also obtain 40.08% in MAE and 37.95% in RMSE improvement than the 

TARIMAX. It clearly proves the reason for using trend patterns instead of residual patterns in the literature. The use 

of the trend patterns instead of residual patterns averagely improves 11.72% and 11.40% in MAE and RMSE the 

performance of the ARIMA model.  

Table (8): Improvement percentages of the proposed model against other models. 

Model  

Data 

Sets 

 MAE  RMSE 

 

Train 

 

Test  Train 

 

Test 

ARIMA   

S
o

ta
v
e

n
to

 D
a

ta
 S

e
t

 

68.53 66.32  71.10 67.82 

MLP   57.97  55.00  61.42  57.02 

TARIMAX    59.51  55.00  61.25  57.02 

RARIMAX    65.41  57.69  65.44  61.17 

TMLP   45.57  40.14  48.26  42.49 

RMLP   53.88  43.81  53.79  48.34 

ARIMA -MLP   20.38  14.36  17.71  18.76 

ARIMA/MLP    55.14  27.53  53.30  27.73 

KARIMAX    53.70  56.54  56.99  57.85 

KMLP   28.37  14.21  28.00  23.29 
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AVERAGE   50.85  43.06  51.73  46.15 

ARIMA   

C
o

lo
ra

d
o

 D
a

ta
 S

e
t 

 37.04  15.05  30.22  16.36 

MLP   21.09  12.91  17.46  15.75 

TARIMAX    31.97  13.87  18.20  15.33 

RARIMAX    36.05  14.29  25.42  15.81 

TMLP   15.23  6.80  11.71  11.61 

RMLP   20.22  12.65  16.40  15.19 

ARIMA -MLP   31.25  12.56  15.32  13.62 

ARIMA/MLP    13.54  5.37  8.89  7.64 

KARIMAX    23.32  11.75  15.63  13.91 

KMLP   8.69  4.21  7.22  9.59 

AVERAGE   23.84  10.946  16.647  13.481 

The results of the MLP model also indicate almost the same conclusions; while using the MLP model and 

modeling nonlinear patterns, performances are improved. The use of the MLP instead of the ARIMA model alone 

can averagely improve the obtained results by more than 33% in both criteria. 

Table (9): Improvement percentages of the proposed model against other classes of models. 

Classes  

Data 

Sets 

 MAE  RMSE 

 

Train 

 

Test  Train 

 

Test 

1- SLM models  

S
o

ta
v
e

n
to

 D
a

ta
 S

e
t

 

68.53 66.32  71.10 67.82 

2- SNM models   56.85  53.92  60.42  55.99 

3- STM models   49.27  44.08  51.60  46.32 

4- SRM models   53.33  43.14  53.35  47.65 

5- PLM models   53.70  56.54  56.99  57.85 

6- PNM models   24.61  10.05  24.00  19.12 

7- SCM models   20.38  14.36  17.71  18.76 

8- PCM models   55.14  27.53  53.30  27.73 

AVERAGE   47.73  39.49  48.56  42.66 

1- SLM models  

C
o

lo
ra

d

o
 D

a
ta

 

S
e

t 

 37.04  15.05  30.22  16.36 

2- SNM models   21.09  12.91  17.46  15.75 
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3- STM models   23.60  10.33  14.95  13.47 

4- SRM models   28.135  13.47  20.91  15.5 

5- PLM models   23.32  11.75  15.63  13.91 

6- PNM models   8.69  4.21  7.22  9.59 

7- SCM models   31.25  12.56  15.32  13.62 

8- PCM models   13.54  5.37  8.89  7.64 

AVERAGE   23.33  10.70  16.32  13.23 

Roughly, these results are also repeated for its preprocessed versions (e.g., the TMLP instead of the TARIMAX 

and RMLP instead of the RARIMAX model). At the same time, the proposed model averagely can reach 29.78% in 

MAE and 30.97% in RMSE improvement than the TMLP and RMLP. It can be concluded from these results that at 

first, the use of the nonlinear modeling approach can be a better solution than linear ones for improving the 

forecasting accuracy. Second, the proposed idea of using residual as well as trend patterns in both linear and 

nonlinear environments can be an appropriate way to yield more accurate results by a more comprehensiveness 

modeling process. Furthermore, the proposed model outperforms both series and parallel component combination 

based hybrid models in both MAE and RMSE criteria in train and test data sets. The proposed model can reach 

25.81% and 13.46% in MAE and 16.51% and 16.19% in RMSE improvement than the series combination based 

hybrid model in train and test data sets, respectively. The proposed model can obtain 34.34% and 16.45% in MAE 

and 31.09% and 17.68% in RMSE improvement than the parallel combination based hybrid model in train and test 

data sets, respectively. 

5. Conclusion 

Advanced modeling to predict time series has become a leading subject in much recent research in the literature. 

On the other hand, improving the accuracy of predictions, especially in complex environments and nonlinear 

systems, has become one of the most challenging and the hardest issues for researchers. Hybridization is one of the 

most common ways of improving forecasting accuracy as well as reducing the risk of using inappropriate single 

models that have extensively and successfully been used in recent investigations. Wind energy is one of the most 

important clean energy and suitable alternative for fossil fuels. Due to the importance of wind power forecasting for 

planning purposes, several methods have been developed and used to predict this energy source more precisely. 

However, increasing the accuracy of wind power and speed forecasting models is a crucial challenge for 
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researchers, due to specific characteristics, as well as the existence of sophisticated linear and nonlinear patterns in 

the data. In this paper,  a new filter-based hybrid model is proposed in which these different structures and patterns 

can simultaneously be modeled. The main idea of the proposed model, which differs from other existing hybrid 

models, is that in the proposed model, the residual patterns are not set aside and are not considered as noise, due to 

the fact that there is no logical evidence supporting it. Empirical results indicate that the proposed model, due to 

simultaneously using linear/nonlinear, trend/residual, models can model more different patterns and structures in 

underlying data, can achieve more accurate results. 
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