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1. Introduction

In recent yearshe idea of using a mathematical model to describe the behavior of physical phenomena has been
very much considered. Specifically definitive model, based on physical laws, enables researchers to calculate the
numberof time dependenciegrecisédy at anymoment in timeHowever, inthe realworld, we often face time-
dependent phenomemnéth many unknownor unavailablefactors (Lindley, 2010; Roulston et al., 2003 this
case, when it is not possible to achieve a definite model, the prediction matbwadde-used, especially when the
past observations of a variable and primary relationships between spésiitvations are availablEorecasting
methodsthat are used in different fields of science can be categdvaseld orvariousaspectsFor example, the
prediction methods used in the field of wind energy can be divided into four categoriesldflghort term
(several seconds to four hours), 2) short term (4 to 24 hours), 3) mestion{l to 7 dayshnd 4) long term (more
than 7 dgs) (Zack, 2003; Soman et al.,, 201@Iso, the structure of forecasting methods can be divided into
two types of 1) single methods and 2) hybrid methods. Each of these categories can also be subdisidatleinto
subgroups.

For example, single methsaan be divided into three subclasses of 1) physical methods, 2) statisticats,
and 3) intelligent methods; and hybrid methods can be divided into four subcategories of @repeseessing
based approaches, 2) parameter optimizdiesed apprades, 3) postprocessing basafdproaches, and 4)
componenbased in series or parallel approachBse physical methodsare based on the numerical weather
predictionmodelsand usingsomedata such asurface roughnessyography, obstacles, pressusaed temperature
to estimate the local wind power, speadd direction(Lange et al., 2008)The physical approaches use more

accurate physical descript®for modelingin compaisonto statistical approach€Kariniotakis et al.2004; Lange
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et al, 2006). Marjanovicet al. (Marjanovic et al. 2014have introduce@ weatheresearch anébrecasting (WRF)
model for 48kahead wind power forecastinghe simulation results show significant improvemenilraditional
statistical methods such gsantileregressiormodels(Wang et al., 2019; Nathaniet al., 2018Wang et al.2018;
Lahouar et al., 2017; Zhang et al., 2015; Bessa £P@12) time series modelg§Jakob et al., 2018Roble$
Rodriguez &Dochain, 2018; T. Filik & U. Filik, 2017; Ziel et al2016; Lydia et al., 2016; Guo et al., 201gtpy
models(Kou et al., 2014; Kou et al., 201BamireZ Rosado et al., 2009%tochastic differential equatiomaodels
(Xydas et al., 2017; Iversen et al., 20l@)dMarkov regimeswitching moded (Carpinoneet al., 2015; Song et al.,
2014, D6 Ami c are aneong the most impartartt d@nyl more popular methods, which extensively used to
wind power and speddrecasting.

The SARIMA model for 24 hour®f wind speed forecasting provided (Bivona et al.,2011) In this study,
wind speed time series in two regions of Itafgused to test the proposed model, whose numerical results show the
efficiency of the SARIMA model The Hammerstein Autdregressive model (HAR) for-24 hours wind speed
forecastings used(Maatallah et al., 2015Yhe proposed model is applied to real data from two different sites. The
results show that theroposedHAR model is better than ARIMA andlLP models in terms odlifferent indicators
such as RMSE, MAEand MAPE.Despiteall the statisticamodefs advantageshey haveseveraldisadvantages
and limitations such as the inability to modelonlinear,complex and multiple structuresTheselimitations
encourageesearcherso developintelligentmethodsto address the defects of statistical moddlany researchers
have developed intelligent methods due to their unique features in modeling complex nonlinear patterns in
underlying datalntelligence approaches, such as artificial neural networks (Waab, &018; Yu et al., 2018;
Ahmed & Khalid, 2018; He & Li, 2017; Wang et al., 2017) fuzzy sets and systems (Dong et al., 2017; Taslimi
Renani et al., 2016), and support vector machines (Hu et al., 2014; Yang & Zhao, 2012), have been developed and
frequenty applied for wind power, speed, and direction forecasting.

The LRNN model for shotterm wind power and speed forecasting is used (Olaofe et al., 2014). Empirical
results indicate that the proposed model can yield more accurate results than othelsSTHe &d NESNMP
models for mediunterm wind speed and direction forecasting are used (Chitsazan et al., 2019). To demonstrate the
efficiency of the proposed methods, they have compared with ESN and adaptivéuzeyrinference system
(ANFIS). Intelligent methods are a universal approximation to modeling and analyzing systems with appropriate

accuracy to lifting the linear limitation dftatistical approache#lowever, many studies indicate that artificial



Journal of Engg. Research Online First Article

neural networks may be incompatible and inmate in some specific situations (Khashei & Bijari, 2010).
Generally,both statistical and intelligenirgle models, despite their unique features and specificatiaveg a
critical limitation to modeling angroviding accurate results

In other words, by using a single model, a specific part of the patterns and relationships in the raw data
is modeled. Therefore, using a single model may increase the risk of using an inappropriate model for modeling
(Khashei & Bijari, 2011). Recently,esearchers have more focused on hybrid models in order to yield more
comprehensiveness andnsequently achieve more accuracy and low risk in-iemis forecasting. In other words,
the main idea of hybrid methods is to take advantage of single modeikagieously for more comprehensive,
accurate, and less risk modeling. Hybrid methods can be categorized into different categories the 1) data
preprocessing based hybrid models (DAH), 2) parameter optimization based hybrid models (PAH), 3)
postprocessingased hybrid models (POH), and 4) components combination based hybrid models (CCH). Data
preprocessingpased hybrid models decompose wind data into smooth and regular parts that are easily identifiable,
and then each decomposed segment provides an appquediction before combining with the predicted models.
A new data preprocessiigased hybrid technique based on VMD, and MKRR méatel0 min, 30 min, and ore
hour wind power and speed forecasting is used (Naik et al., 2018). In this paper, tls wifgirspeed angdower
data have been decomposed by VMD decomposed model; then, decomposed patterns have been used as input
for the MKRR modelParameter optimizatiehased hybrid models, as well as postprocedsasgd hybrid models,
have a significancontribution in increasing the accuracy of wind forecasts.

A new parameter optimizatidmased hybrid technique, HARCO-PSO, for ultrashortterm wind power
forecasting is used (Rahmani et al., 2013). The hourly wind power of the Binaloud wind fabmenasollected
and used to train and test the developed model. A postprocéssiad hybrid model with an error feedback
scheme (IRBFNNEF) for shortterm wind power and speed forecasting is provided (Chang et al., 2017). In this
study, a selected day 8014 is used to test the proposed model and four other compared models. Another widely
used hybrid approaches are models that combine two or more single models or components in series or parallel
structures to achieve higher accuracy in prediction (Khasthal., 2013). A serielased hybrid model, based on
integrating machine learning techniques and physical knowledge modelingbgefor shoriterm wind speed

forecasting is provided (Vaccaro et al., 2012). A pardléded hybrid model, the KENN model for daily wind
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speed forecasting is proposed (Shukur & Lee, 2015). In this study, daily wind speed data from Iraq and Malaysia is
used. Some other hybrid methods for wind power and speed forecasting are stated in Table (1).

As mentioned previously, hyid structures can be categorized into different categories. The literature
demonstratethat the data preprocessibgsed hybrid models are the most popular and widedgl method among
other hybrid models (Liu & Chen, 2019Because after the prepresing techniques, the higlequency sub
signals are extracted in order to smooth the raw data, so the prediction accuracy increases. However, the difference
of the preprocessinbgased hybrid model in this article with other data preprocessingd hybridmodels in the
literature is that both trend and residual patterns are simultaneously used. On the other hand, the main idea of the
proposed hybrid model is that the residual data that has been considered as noise in other hybrid models and not

used in themodeling is considered as input data. The reason is that it may enclose beneficial information and

patterns for modeling; so, by eliminating this information, the accuracy of modeling may be reduced.

Table (1): Some recent proposed hybrid models for wind power and speed forecasting.

[Ref.] Year Domain Time-scale Applied Model(s) Technique(s)
Jianget al. 2019 Wind power Ultra short term PICP, LSSVM PAH
Chenet al. 2019 Wind speed Ultra shortterm  QPSO, LSSVM PAH
Zhanget al. 2019 Wind speed Ultra shortterm 0SO, RELMC PAH
Jianget al. 2019 Wind speed Ultra short term PSO, MODEFTS PAH
Jianget al. 2018 Wind speed Ultra short term CS, \\SVM PAH
Liu et al. 2018 Wind speed Ultra short term GWO, RELM PAH
Liu et al. 2018 Wind speed Ultra shortterm  WF, BFGS POH
Wanget al. 2018 Wind speed Ultra short term ARIMA, ELM POH
Li et al. 2018 Wind speed Ultra short term RELM, LSTM POH
Jianget al. 2018 Wind speed Mediumterm NWP, GPR CCH
Akcay & Filik 2018 Wind speed Ultra short term LSSVM, GARCH CCH
Liu et al. 2018 Wind power Short term ARIMAX, PR CCH
Hu & Chen 2018 Wind speed Ultra short term LSTM, ELM CCH
Yu et al. 2018 Wind speed Ultra short term LSTMDE, HELM CCH
Jiang& Li 2018 Wind speed  Ultra shortterm  RNN, SVM, LSTM CCH
Sunet al. 2017 Wind speed Short term KPCA, CVR, COR DAH
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Wanget al. 2017 Wind speed Ultra short term CEEMD, ENN DAH
Wanget al. 2017 Wind speed Ultra short term VMD, GAWNN DAH
Ma et al. 2017 Wind speed Ultra short term SSA, GDFNN DAH
Changet al. 2017 Wind Power shortterm EF, IRBFNN POH
Cassola& Burlando 2017 Wind speed short term ARMA, KF CCH
Aghajaniet al. 2016 Wind power  Short term WT, HNN DAH
Azimi et al. 2016 Wind power  short term DWT, HANTS, MLPNN DAH
Shao& Deng 2016 Wind power Ultra short term MADF, LLE DAH
Lynchet al. 2014 Wind Speed  Ultra short term KF,YR.NO NWP POH
Zhaoet al. 2012 Wind speed Long term NWP, KF CCH

Also, a parallel structure is a comprehensive modeling and can produce more accuraterahdfdéoecasting
models. The literature shows that the combination of components in the parallel form is generally more usual and
more accurate than the combinatio seriegHajirahimi & Khashej 2019).Accordingly, the key goal of this paper
is to propose a hybrid approach that can simultaneously cover linear/nonlinear, trend/residual, and different
hybridization structures; and also can yield accurate forecBetsthis reason, in the proposed model, the
underlying raw data sets are considered to be composed of trend and residual patterns that can be decomposed by
the Kalman filter.
2. The proposed parallel trend-residual (PTR) hybrid model

The prediction ofime series based on combined modeling has been one of the most important research areas in
recent years. Hybrid models have been used to improve forecasting accuracy by combining the benefits of
individual forecasting modelsas well asomitting their disdvantages in forecasting. Combined models in the
subject literature, basically, inclutlee combination of different prediction models under series or parallel structures
and can also béne combination ofvariousprediction models with preprocessiagdbr postprocessing techniques.
The dhta preprocessingiethodis the widelyused approach in modeling. The reason foretktensie applicatios
of the preprocessinmethodsis that the raw data is analyzéat irrelevant and redundant informatiamoisy and
unreliable data outlier data etc., before entering into the forecasting procdéscause of this, the use of
preprocessing technigsieanincrease the accuracy of predictions. But in the subject literature, residual data in the

preprocessingprocesseds completely excludeand is considered asoise in the modeling and forecasting
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procedure Consequently, the main idea of our proposed hybrid modelise 1) the residual data in the proposed

model, 2) differenthybridization structures, 3)linear and nonlinear modeling in order to increase the

comprehensiveness of modeliagd prediction accuracyin general, the difference between our proposed model
and the subject literatuman besummarizeds follows:

1. In classical structures based on the gatprocessingechnique only the trend data from the data preprocessi
processs entered into the prediction model. However, in the proposed method, trerashdegaidualdataare
simultaneously considered as input varialethe predictiorprocedue. Accordingly, if the data obtained from
the studied system involves dynamic multipdend structures, the proposed mocheh bettemodel them.

2.In the classical structures in the subject literature, raw dathe only data from théatapreprocessingrocess
is usedin the prediction model. However, in the proposed methmellaw datatrenddatg andresidualdata
and theilagsaresimultaneoushentered into the prediction model. Accordingly, if the preprocessed data of the
studied gstem still contains specifimodelablepatterns, the proposed modahmodel more patterns.

3. In the classical structures based ondhtapreprocessing, the preprocessed data do not enter the final model
separately. However, in the proposed methbe preprocessed data are alsgedasinput of the prediction
model.

4. In the classicahybrid approacks only the parallel combination dfifferent forecastingmodelswith the same
inputs in general areused However, in the proposed method, in addition to using ttiféerent components,
including the Kalman filter, the nultilayer perceptron and autoregressivantegratedmoving average with
explanatoryvariablemodes, the similarmodek with differentinputs arealso combinedh the parallel formBy
doing so, more emphasianbe placed otthefundamentapatterrs and relationships themodelingprocess

In this way, consideringthe autoregressiventegratedmoving average withexplanatoryvariable,the multilayer

perceptronas prediction modelandthe Kalman filteras adatapreprocessing methothe overallstructureof the

proposed method is presented in Kig. The steps of the proposed madhcan be summarized as follows:

Stagel: Data Preprocessindgechnique:ln the first stage of the proposed method, the raw data is decomposed by

the Kalman filter techniquélhe Kalman filter could be described as an approach consisting of two decomposing

stages. The decomposipgtternsaregiven byEq. (1).

Y, =Y Y @
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where, Y, is the output ofthe Kalman filter, Y," is the decomposing trengatterns, andY,® is the residual

decomposing patterns.

Stage II: Linear Trend/Residual Modelindn the second stage of the proposed model, at first, the raw data and
decomposed trend patterns from the previstage are included in the autoregressive integrated moving average
with explanatory variable (ARIMAX)model in order to model the linear trend correlation structures in the
underlying data sets. Then, the raw datd decomposed residual data are used in the ARIMAX model in order to
model the remained modelablieear correlation structures in the underlyingtal that are left as noise in the

residuals.
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Fig. (1): Theoverallstructure othe proposed model.

The ARIMAX model is similar to a multivariate regression model &lgb allows us to take advantage of
autocorrelation that may be present in residuals of the regression to improve the accuracy of a@urezsst.
anotherviewpoint The ARIMAX model is anAuto-Regressive Integrated Moving AveragfeRIMA) model that
also consist®f the exogenous entrance, besidissautoregressivAR) and moving averagéMA) parametersin

this way, he ARIMAX model can be explained as the combination ofAt®regressive( AR( p)), Integrated
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(d), Moving Average (MA(Q)) , and Exogenous X(r) variables, which is oftenrepresentedby

ARIMAX (p,d,Q,r. A simplified form to represent this model is described in Eyg. (

p q m
Z=b+a 7z, A;q;,e @ xXJ 2
i=1 IES j 1=

where Z, is a dependent variablethetime t, 4 is a constantz, , is a dependent variable (lagged by the time

steps,i; £, is a coefficient ofz,,; P is the maximum number of time intervals; represents the exogenous
variables (in this casérend datawind power datg x, represents the coefficients of the exogenous variafles;

the maximum number of exogenous variablgsjs the coefficient of the terme,_ ; , which represents the error in

j 1
thetime t lagged fromj. Finally, &€ is the error component of the model wighi N(0, £ ). The coefficients of
the models are estimated by regresgi¢imasheiet al., 2009).

Stage Il : NonlinearTrend/Residual ModelingSince the ARIMAX model cannot model the nonlinear correlation
structures, in the next stage of the proposed model, a multilayer perceptidt) (s used in order to model the
nonlinear trend and residualorrelation structures in the underlyingasetsas follows(Zendehboudi2016):

£ a9, 0

Yo=aw g%gv;{ Yo e (1 12Nt 1R, 3)

j=0
where, W; and W, are connection weightg, is the number of input nodes arf is the number of hidden nodes.

Stage IV:Parallel combination In the last step of the proposed model, the final predictidheoproposed moded

calculatedrom the results o&ll componentgand their weightin the parallel structure by Eqt)(

Yroa =W Yo @) W Yagax O W Y O W Yagnaax © W Yo | @)
where, y., »(t) and y.,..(t) arethe predictiorof the MLP and ARIMAX models for trend datat thetime t,
respectively. In the similar, thg,,muax(® and ye,.-(t) aretheforecastingof the ARIMAX and MLP models for
residual dataat the time t, respectively. They,, (t) is the Kalman filter modeloutputvalue atthe time t and

w (i=1,2,...,5 are the weights of components.this paper, these weights astimated by the ordinary least
squaresnethod(Chahkoutah& Khashej 2017)

3. Applying the proposed method to predict wind power
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3.1. Data sets

In this section, in order to evaluate the accuracy of the proposed model and calculate its performance against
othermethods2 wind power and speed data sets are used. The first datdseatljswind power data from a wind
power plant located in Spairas been usedhis hourly data set consists of 168 points that show in Fig. (2). The
85% of data (e.g., 144 observations) is applied as the training sample, and 15% of the remaining data (e.g., 24
observations) is used as the test sample in order to &dheaperformance of different model$ie second data
set is the wind speed data set, which is gathered every 5 min in the Colorado State on 09/02/2012 from 00:00 to
14:00, and totally consists of 169 points. Approximately, the first 80% of data (8.@b%8rvations) is applied as
the training sample, and 20% of the remaining data (e.g., 36 observations) is used as the test sample. These data sets
are among the most widely used benchmark data sets in the field of wind forecasting, which has bedly frequen

used in thditerature(Azimi et al. 2016).

Training sample Test sample
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Fig. (2): The wind power dataets

3.2. Performance Evaluation Criteria

The results presented in this paper are based ones@iuationcriteriarelated to the outputsf 1) Kalmanfilter
model 2) trend ARIMAX model| 3) trendMLP model 4) residual ARIMAX model| 5) residualMLP mode] 6) and
theproposed hybrid model. In this papdifferent indicators sutas MAE (Mean Absolute Errognd RMSE (Root

Mean Squared Error) are usediich arecalculated as follows:

10
MAE =4 ¢ (5)
t=1
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RMSE=

N

a (e (6)

t=1

Z|~

where, § and A (t=1,2,...,m areforecast error and forecasted value at timeespectivelyand N is the
number of total underlying data.
4. Results of the proposed model

In this section, thdirst wind power dataetis used to design different modeds well as the@proposedmodel.
After designing each model using training data, the performantkeahodek is calculated using the criteria
mentionedabove basedn the test datand ultimately a comprehensive assessment of the méthedsrmance

compared with each other in the trainangd thetestdatahas beemade

4.1. Results of the Data Preprocessing technique (Stage |:Kalman Filter)

Following the processf the proposed methothe Kalman filter modeis first used for preprocessing input data.

Training sample Test sample
1.80E+06

1.40E+06
1.00E+06 {{f" qf’ﬂ Q_,. ,ﬂﬂl . A
6.00E+05 11§ "’J """"""""""" ‘ il S 5 [Le ' R's 9 ¢ Rl »

————— - —

2.00E+05 gpiNiWL o9 1§ = A o I P e
. [T T ed® o L IS UL TP T, O " [ SO, @, ", Py
-1.00E+06 + :

—e— Actual data Trend pattern —e—Residual pattern

Thetrendand residuapattern obtained from the Kalman filtreshown in contrast to the actual data in £&).

Fig. (3): Trendand residuapattern in contrast to the actual data
4.2. Results of the Trend/Residual Linear Modeling (Stage II: Trend/Residual andAutoregressive Integrated
Moving Average with Explanatory Variablenodel3
i) The trend pattesin the data and the relevdags along with the raw datayeentered into theutoregressive
integratedmoving average withexplanatoryvariable (TARIMA X) model The iesults of this model are obtained

using the Eviews package softwar@he estimation of theFARIMA X model using evaluation characteristics

10
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(absolute error (AE) and squared error (SEillustratedin Fig. @). The performanceof the TARIMA X modelis

extensively presented in Tabl® (
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Fig. (4): The performance of thEARIMAX modelfor test data

Table (2): The performance of theARIMAX model results in the test day

Evaluation Criteria

Evaluation Criteria

Time (h) Time (h)
AE SE AE SE

1:00 8.40x1d 7.13x10 13:00 2.40x10 5.76x106°
2:00 1.60x16 2.56x10° 14:00 4.50x1d 2.07x16
3:00 1.16x16 1.36x10° 15:00 4.90x1d 2.41x10
4:00 1.69%x16 2.87x16° 16:00 3.60x1d 1.33x10
5:00 1.44x16 2.09x16° 17:00 5.50x1d 3.03x14
6:00 1.08x16 1.18x16° 18:00 6.00x1d 3.60x14
7:00 1.63x16 2.66x16° 19:00 1.10x16 1.22x16°
8:00 1.30x16 1.70x16° 20:00 1.20x1G 1.45x10°
9:00 6.00x1d 3.69x14 21:00 8.05x1d 6.49x10
10:00 5.00x1d 2.50x16 22:00 7.76x1d 6.03x10
11:00 3.49x16 1.22x16* 23:00 4.73x1d 2.24x10
12:00 9.70x1d 9.59x16 24:00 8.90x1d 8.00x14
MAE 1.10x10° RMSE 1.31x10°

11
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Results of Table (2) indicate théte TARIMA X model canachievel.10x1¢ and 1.31x1C in the MAE and
RMSE inthewhole testday, respectivelyThe errorsof the TARIMA model for training and test data sets are also

shown in Fig (5).

Training sample Test sample
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Fig. (5): The errorof the TARIMA X model for training and test data sets.

i) In the nextstageof step 2,the residual pattesin the data and the relevaiags along with the raw data, are
entered into the Autoregressive Integrated Moving AveragethétBxplanatory VariabldRARIMA X) model.The
performance indicators of the designBARIMA X model are shown in Fig.6). The peformance ofthe

RARIMAX model is extensively presented in Tabl@.(
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Fig. (6): The performance of tHRARIMAX model for test data

Table (3): The performance of tiRRARIMAX model results in the test day

Statistical Characteristics Statistical Characteristics
Time (h) Time (h)
AE SE AE SE
1:00 1.38x1C0 1.91x10° 13:00 1.64x10 9.57x10

12
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2:00 2.43x10 5.91x10° 14:00 9.78x1¢ 2.73x10
3:00 1.29x10 1.66x10° 15:00 5.22x1d 1.56x10°
4:00 5.43x1d 2.95x10 16:00 1.25x10 1.40x10
5:00 2.08x10 4.36x10° 17:00 3.74x1¢ 1.44x10°
6:00 6.97x10 4.87x10 18:00 1.19x1¢ 7.00x10
7:00 3.11x1C6 9.70x10° 19:00 8.57x10 4.91x10
8:00 8.15x1¢ 6.65x10 20:00 7.00x1¢ 2.36x10°
9:00 5.18x10 2.69x10 21:00 1.53x1¢ 2.00x10’
10:00 4.34x10 1.89x10 22:00 5.44x10 8.20x10
11:00 3.11x1C6 9.68x10° 23:00 9.05x1d 1.86x10
12:00 1.38x10 2.69x10° 24:00 4.30x1¢ 4.29x10°
MAE 1.17x10° RMSE 1.45x10°

Results of Tabled) indicate that th&ARIMAX modelcan achievd.17x1F and1.45x1Fin MAE, and RMSE

in thewhole test day, respectivelyhe errorsof the RARIMA X model for training and test data sets are also shown

in Fig. (7).
Training sample Test sample
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1
1
5.00E+05 ~ nliv"" -
NN
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pEve S S RV Fid's g I8 Y &8 g
vl :..'11 T e T e
-5.00E+05 4} " '
' v
-1.00E+06

Fig. (7): The errorof theRARIMA X model for training and test data sets.
4.3. Results of the Trend/Residual Nonlinear Modeling (Stage IlI: Trend/Residual andMulti layer Perceptron
model3
i) The MLP is the nonlinear model that is sketched in the proposed nRiddlar to the previoustage, lhe
trend pattern in the data and the relevagg along with the raw datare entered into théultilayer Perceptron
model The esults of this model are obtained usthg Matlab package software. Thstimationof the TMLP

model is presented in Fig. (8). The resultthefTMLP modelare expansively reported in Tabiy.(
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Fig. (8): The performance of thHEMLP model for test data

Table (4): The performance of tiEMLP results in the test day

EvaluationCriteria

Evaluation Criteria

Time (h) Time (h)
AE SE AE SE

1:00 6.32x1d 4.00x10 13:00 1.79x1G 3.24x16°
2:00 1.20x16 1.44x10° 14:00 3.40x1d 1.16x14
3:00 8.72x1d 7.61x16 15:00 3.60x1d 1.36x10
4:00 1.27x16 1.61x16° 16:00 2.72x1d4 7.45x16
5:00 1.08x16 1.18x16° 17:00 4.13x1d 1.71x18
6:00 8.13x1d 6.62x10 18:00 4.50x1d 2.03x10
7:00 1.22x16 1.50x16° 19:00 8.27x1d 6.86x10
8:00 9.78x1d 9.58x10 20:00 9.03x1d 8.17x16
9:00 4.56x1d 2.08x16 21:00 6.04x1d 3.66x14
10:00 3.74x1d 1.40x18 22:00 5.80x1d 3.39x14
11:00 2.62x16 6.88x10° 23:00 3.50x1d 1.27x10
12:00 7.34x1d 5.40x16 24:00 6.69x10d 4.49x16
MAE 8.27x10* RMSE 9.79x10*

Results of Table4) indicate that th@ MLP model can achievB.2710" and9.79x10"in MAE, and RMSE in

the whole test day, respectiveljhe errorsof the TMLP model for training and test data sets are also shown in Fig.

14
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(9). These results indicathatthe MLP modelcan achieve more accurate andre reliable results than ARIMA
It demonstrates that the underlying data set consists of the linear patterns and structures, in addition to nonlinear
ones. Thus, the classic ARINMAmodel is inadequate for modeling and cannot comprehensively and ap@igpri

model all existing patterns and structures in the data.

Training sample Test sample
6.00E+05

4.00E+05
2.00E+05
0.00E+00 1
-2.00E+05 1
-4.00E+05
-6.00E+05
-8.00E+05

Fig. (9): The errorof the TMLP model for training and test data sets.

i) In a similar process, the residual patteimthe data and the relevdags along with the raw data, are entered
into the MLP model. The performance indicators of the desigidtlP model are shown in Fig.1Q). The

performance of ther MLP modelis extensively presented in Tab®.(
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Fig. (10): The performance of theMLP model for test data
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Table (5): The performance of theMLP results in the test day

Statistical Characteristics Statistical Characteristics
Time (h) Time (h)

AE SE AE SE
1:00 1.03x10 1.07x10° 13:00 6.00x1G 5.38x10
2:00 1.82x10 3.33x10'° 14:00 3.90x10 1.54x10
3:00 9.60x1¢ 9.34x10 15:00 9.30x1¢ 8.79x10
4:00 4.00x1¢ 1.66x10 16:00 2.80x10¢ 7.90x1¢
5:00 1.56x10 2.64x10'° 17:00 8.90x10 8.10x10
6:00 5.20x1¢ 2.74x10 18:00 6.00x1G 4.10x10
7:00 2.35x10 5.45x10'° 19:00 5.20x10 2.76x10
8:00 6.10x1¢ 3.74x10 20:00 1.15x10 1.33x10%
9:00 3.80x1d 1.52x10 21:00 4.00x1CG 1.60x10
10:00 3.20x1¢ 1.06x10 22:00 6.70x1¢ 4.62x10
11:00 2.33x10 5.44x10'° 23:00 3.20x10 1.04x10
12:00 1.23x10 1.52x10%° 24:00 1.55x1@ 2.41x10'°
MAE 8.81x10* RMSE 1.09x10°

Results of Table5) showthat theRMLP model can achiev8.81x10" and1.09x10° in MAE, and RMSE irthe

whole testday, respectivelyThe errorsof the RMLP model for training and testata sets are also shown in Fig.

(19).
Training sample Test sample
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Fig. (11): The errorsf theRMLP model for training and test data sets.

4.4. Results of the combining (Stage V)
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According to the process of the proposed model and after modeling comptimewisight of each component,
i.e, trend ARIMA, residual ARIMAtrend MLP, residual MLPandthe Kalman filter, is calculatedAfter that, final
forecasts of the proposed modek calculated by Eql{). These forecasting results usiagsolute and squared
error valuesare presented in Figl?). The actual and fitted values of the proposed model for train and test day are

shown in Fig. (13)Also, the evaluationmetrics for the proposed model for test day are reported in Table (6).

PROPOSELOD(AE) PROPQ,SED(SE)
o
e i
1.60E+05 - 2.50E+101 -
1.40E+05
1.20E+05 ) 2.00E+10+
1.00E g 3 33 3 3 < < 2
.00E+05 3 5 LT.I%’% SH & = qu 1.50E+104% <
8.00E+04 S SReUl h] S« W WSS la S
=) o6 © S oOoFf7F L ? o
© T O R 60 N NWy s W o 3+ g 3
6.00E+04 ol ol < S ©58  1LO00E+10{23 9 I8l 32 3 8
@ o o5 ~ oo W QUSSP FloWws 5 33
4.00E+04 H CRE85FwoUl HRFRT QUQW T +
8 5.00E+09 RN 4 Rk AY DAY
2.00E+04 = SVeISal » ol O
0.00E+00 iy g3 N

0.00E+00

1 3 5 7 9 1113 1517 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23

Fig. (12): The performance ahe proposed model
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Fig. (13): Actual and fited values of the proposed model for train and test data sets.

Table (6): Results of the proposed moael atestday.

Statistical Characteristics

Statistical Characteristics
Time (h) Time (h)
AE SE AE SE
1:00 9.30x10¢ 8.65x10 13:00 1.50x10 2.37x10°
2:00 4.60x10 2.19x10 14:00 4.90x1d 2.45x10
3:00 7.50x10 5.74x10 15:00 5.90x1¢ 3.58x10
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4:00 2.00x1¢ 4.21x10 16:00 1.80x1d 3.24x10
5:00 6.10x1d 3.78x10 17:00 5.60x1d 3.20x10
6:00 6.00x1C 3.60x10 18:00 3.20x1d 1.03x10
7:00 4.90x1CF 2.00x10 19:00 2.60x10 6.87x10
8:00 8.60x10° 7.40x10 20:00 5.20x10 2.79x10
9:00 2.90x1d 8.81x10° 21:00 6.72x1G 451x10
10:00 5.90x1¢ 3.54x10 22:00 5.20x1d 2.76x10
11:00 6.80x1¢ 4.65x10 23:00 3.90x1¢ 1.56x10
12:00 5.00x1d 2.54x10 24:00 3.80x1d 1.50x10
MAE 4.59x10* RMSE 5.36x10*

Results of Table6) show that thgoroposednodel can achieve 4.59x@nd 5.36x1%in MAE, and RMSE in
the whole test day, respectivelyhe errorvaluesof the proposed model fdhe train andtest data setare also

shown in Fig (14).

Training sample Test sample
3.00E+05

2.00E+05
1.00E+05
0.00E+00
-1.00E+054 * § . i
-2.00E+05 . ?i
-3.00E+05

Fig. (14): The errorof the proposed model forain andtest data set

4.5. Comparison with other those hybrid and individual models

In this section, the performance of theoposed model is comparedth some other individuaind hybrid
modelsusing the 2 wind powerand speedlata set Evaluation criteriae.g., MAE, and RMSE of theodelsin
training and test data sets, are summarized in TablBég)desthe improvemenpercentage of the proposed model
in comparison with those models is given in Tablg (B addition, Table @) summarizeshe improvement
percentage of the proposetbdel against other classes of models as follows:

1) SLM: Single lineamode(s) (e.g.,ARIMA),

2) SNM: Single nonlineamodel(s)(e.g., MLP),
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3) STM: Single trendnodel(s)(e.g., TARIMAX, andTMLP),

4) SRM: Single residuamodel(s)(e.g., RARIMAX,andRMLP),

5) PLM: Preprocessindpased lineamodel(s)(e.g., KARIMAX),

6) PNM: Preprocessindgpased nonlineanodel(s)(e.g., KMLP),

7) SCM: Seriesbased components combination hybriddel(s)(e.g., ARIMA-MLP),

8) PCM:Parallelbased components combination hybriddel(s)(e.g., ARIMAIMLP).

Numerical results show that the proposed model in overall can impu@vagely, 37.34 and 27.00 percentages
in MAE, and 34.18 and 29.81 percentages in RMSE the performance of other individual and hybrid models in train
and test data sets, respectively. The biggest value of these improvements is related to the ARIMAamuagl th
can model the linear patterns and uses none of the trend and residual patterns of the prepideegsingosed

model can achieve 46.73% in MAE and 46.37 % in RMSE improvement than the ARIMA.

Table (7): Forecasting performance of different models in train and test data sets.

Data MAE RMSE
Model
Sets Train Test Train Test
ARIMA 2.11x10 1.47x1G 2.99x10 1.75x10
MLP 1.58x16 1.10x16 2.24x10 1.31x10
TARIMAX 1.64x16 1.10x16 2.23x10 1.31x16
RARIMAX _ 1.92x16 1.17x16 2.50x10 1.45x10
TMLP i 1.22x16 8.27x1d 1.67x10 9.79x1d
©
RMLP g 1.44x16 8.81x1d 1.87x16 1.09x16
c
ARIMA -MLP % 8.34x1d 5.78x1d 1.05x16 6.93x1d
ARIMA/MLP ? 1.48x16 6.83x1d 1.85x10 7.79x1¢
KARIMAX 1.44x16 1.06x1G 2.01x16 1.34x16
KMLP 9.2m10* 5710 1.20<10° 7.34x10°
Proposed model 6.64x10* 4.95x10* 8.64x10* 5.63x10*
ARIMA « 1.034 1.016 1.307 1.228
MLP § & 0.825 0.991 1.105 1.219
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TARIMAX - 0.957 1.002 1.115 1.213
RARIMAX 1.018 1.007 1.223 1.220
TMLP 0.768 0.926 1.033 1.162
RMLP 0.816 0.988 1.091 1.211
ARIMA -MLP 0.947 0.987 1.077 1.189
ARIMA/MLP 0.753 0.912 1.001 1.112
KARIMAX 0.849 0.978 1.081 1.193
KMLP 0.713 0.901 0.983 1.136
Proposed model 0.651 0.863 0.912 1.027

The second and third places are also related to the ARIMA model with the use of the preprocessed residual and
trend data, respectively. The proposed model can reach 43.36% in MAE and 41.96% in RMSE improvement than
the RARIMAX. It demonstrates that the al®f using residual patterns instead of ignoring them can be a more
efficient strategy. The proposed model can also obtain 40.08% in MAE and 37.95% in RMSE improvement than the
TARIMAX. It clearly proves the reason for using trend patterns instead otisdgidtterns in the literature. The use
of the trend patterns instead of residual patterns averagely improves 11.72% and 11.40% in MAE and RMSE the
performance of the ARIMA model.

Table (8): Improvement percentages of the proposed model against othelsmode

Data MAE RMSE
Model

Sets Train Test Train Test
ARIMA 68.53 66.32 71.10 67.82
MLP 57.97 55.00 61.42 57.02
TARIMAX 59.51 55.00 61.25 57.02
RARIMAX g 65.41 57.69 65.44 61.17
TMLP ;‘% 45.57 40.14 48.26 42.49
RMLP % 53.88 43.81 53.79 48.34
ARIMA -MLP § 20.38 14.36 17.71 18.76
ARIMA/MLP 55.14 27.53 53.30 27.73
KARIMAX 53.70 56.54 56.99 57.85
KMLP 28.37 14.21 28.00 23.29
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AVERAGE - 50.85 43.06 51.73 46.15
ARIMA 37.04 1505 30.22 16.36
MLP 21.09 12.91 17.46 15.75
TARIMAX 31.97 13.87 18.20 15.33
RARIMAX 36.05 14.29 25.42 15.81
TMLP § 15.23 6.80 11.71 11.61
RMLP é 20.22 12.65 16.40 15.19
ARIMA -MLP § 31.25 12.56 15.32 13.62
@]
ARIMA/MLP © 13.54 5.37 8.89 7.64
KARIMAX 23.32 11.75 15.63 13.91
KMLP 8.69 4.21 7.22 9.59
AVERAGE 23.84 10.946 16.647 13.481

The results of the MLP model also indicate almost the same conclusions; while using the MLP model and
modeling nonlinear patterns, performances are improved. The use of the MLP instead of the ARIMA model alone
can averagely improve the obtained results by rtiae 336 in both criteria.

Table (9): Improvement percentages of the proposed model agsirest classes of models

Data MAE RMSE
Classes
Sets Train Test Train Test
1- SLM models 68.53 66.32 71.10 67.82
2- SNM modls 56.85 53.92 60.42 55.99
3- STM models - 49.27 44.08 51.60 46.32
(]
4- SRM models ig 53.33 43.14 53.35 47.65
©
[a)
5- PLM models o 53.70 56.54 56.99 57.85
c
6- PNM models % 24.61 10.05 24.00 19.12
o
7- SCM models @ 20.38 14.36 17.71 18.76
8- PCM models 55.14 27.53 53.30 27.73
AVERAGE 47.73 39.49 48.56 42.66
1- SLM models 5 g 37.04 15.05 30.22 16.36
s 8 &
2- SNM models 3 ° 21.09 12.91 17.46 15.75
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3- STM models - 23.60 10.33 14.95 13.47
4- SRM models 28.135 13.47 20.91 15.5
5- PLM models 23.32 11.75 15.63 13.91
6- PNM models 8.69 4.21 7.22 9.59
7- SCM models 31.25 12.56 15.32 13.62
8- PCM models 13.54 5.37 8.89 7.64
AVERAGE 23.33 10.70 16.32 13.23

Roughly, these results are also repeated for its preprocessed versions (e.g., the TMLP instead of the TARIMAX
and RMLP instead of the RARIMAX model\t the same timethe proposednodel averagely can rea2B.78% in
MAE and30.9®6 in RMSE improvement thathe TMLP and RMLPIt can be concluded from these results #tat
first, the use of theonlinearmodeling approach can be a better solution than linear ones for improving the
forecasting accuracy. Second, theposed ideaf using residual as well as trendtteens in both linear and
nonlinearenvironments &n be a appropriate way to yield more accurate results lyose comprehensiveness
modeling procesd-urthermore, the proposed model outperforms both series andepacmiponent combination
based hybrid models in both MAE and RMSE criteria in train and test data sets. The proposed model can reach
25.8% and13.48% in MAE and 16.58%6 and16.1% in RMSE improvement than the series combination based
hybrid model in trairand test data sets, respectively. The proposed model can &bt and16.4%% in MAE
and31.09% and17.68% in RMSE improvement than thearallelcombination based hybrid model in train and test
data sets, respectively.

5. Conclusion

Advanced modeling to predict time series hasome a leadingubjectin muchrecent researcin the literature
On the other handmproving the accuracy of predictions, especially in complex environments and nonlinear
systemshas becomene of the mosthallenging andhe hardest issues for researchegbridization is one of the
most common ways of improving forecasting accuracy as well as reducing the risk of using inappropriate single
models that have extensively and successfully been used in meeestigationsWind energy is one of the most
important clean energy and suitable alternative for fossil fuels. Due imploetanceof wind powerforecasting for
planning purposesseveral methods have begeveloped and use predict this energy soce more precisely.

However, increasing the accuracy of wind power and speed forecasting modelsrusiah challenge for
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researchers, due to specific characteristissvell aghe existence afophisticatedinear andnonlinearpatterns in
the dataln this paper a newfilter-basedhybrid modelis proposed in whickhesedifferentstructures and patterns
can simultaneouslype modeledThe man idea of tle proposed model, which differs from other existing hybrid
models is that in the proposed modéhe residual pattesrare notset asideandare notconsidered as noisdue to
the fact that there is no logical evidence supportindeipirical results indicate that the proposed modeé to
simultaneously using linear/nonlinearend/residualmodels can modehore different patternsand structures in

underlying datacanachievemoreaccurae results.
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