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ABSTRACT 

 
To ensure asymptomatic stability and improve vehicle ride comfort, this paper develops a 

fuzzy neural network (FNN) based on the evolved bat algorithm (EBA) to design adaptive 

backstepping controllers with gray signal predicators. A recoil method is used to evaluate the 

nonlinearity of the controlled systems and to derive the control law which is evolved for the 

tracking of the signals. A group of grey differential equations are applied for the grey model (GM) 

(n, h), which is an active model where h is the number of considered variables and n is the order of 

the grey differential equations. In the article, the Discrete GM (2.1) is used to obtain the advanced 

motion of the nonlinear system, so that the command controller can prove the Lyapunov stability 

and feasibility of the entire scheme through the Lyapunov-like lemma. The controller design criteria 

are demonstrated for mechanical elastic wheels (MEW) to establish a viable mathematical 

framework for the new wheels. 

https://doi.org/10.36909/jer.11273
mailto:mengyahui@gdupt.edu.cn,
mailto:t13929751005@gmail.com


Journal of Engg. Research Online First Article 

 

2 

 

Keywords: evolved control, Lyapunov energy function, DGM (2.1), adaptive backstepping, neural 

network. 

Ⅰ. Introduction 

With the rapid growth of the automobile industry, automobile safety has also been significantly 

improved (Singh et al., 2019; Cisija-Kobilica et al., 2019). More and more automobile 

manufacturers car company that makes automobile are beginning to pay attention to removing noise, 

vibration and drive irregularities (Cho et al,2017; Andert et al,2017; Charfeddine and Jerbi, 2021). 

So far, people have made great efforts have been made to improve driving stillness, including the 

development of active steering, better steerable steering systems and steering motors (Xiangyang et 

al,2017;Zhang and Wang et al,2017). As one of the most important components of the vehicle, the 

chassis plays an important role in ameliorating driving vibration stillness and improving 

performance (Moreno Ramírez et al, 2018; Zhang et al, 2018; Kilicaslan, 2018; Kawamoto et al, 

2018). Many researchers began to consider artificial intelligence control methodology for the 

systems.   

Takagi and Sugeno proposed a new fuzzy model, Takagi-Sugeno fuzzy model in 1985. Also, grey 

system theory is a good choice for a control system. The grey model, denoted by GM (n,h) in grey 

system theory, is a dynamic model which consists of a group of grey differential equations, where n 

is the order of the grey  differential equations and h  is the number of considered variables. The 

grey models play an important role in sequence (series) forecasting problems in grey system theory. 

Among all the GM (n,h) models, the most commonly utilized is GM (1,1) model because of the 

simplicity of the modeling process and, especially, the forecasting accuracy. In practical nonlinear 

application, however, it is not easy to know the precise data for the system input and output due to 

the complexity of the control law or the time delay caused by the signal transmission of the system, 

causing the control quantity calculated by the control law to fail to respond to the control system. 

 The requirements of the current state of the system cannot achieve good control. For this type of 
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situation, gray predictive control can be used to find the changing law of system behavior 

development, and to predict the state of the system. This is the so-called advanced control to 

compensate for the time delay of the controlled systems. Because of the strong merits of the T-S 

fuzzy model, the nonstationary control for T–S fuzzy Markovian switching systems is presented for 

practical application. The finite-time stabilization of the T–S fuzzy semi-Markov switching systems 

has also been proven robust for a sampled-data control approach (for more details, please see (Chen 

et al, 2021).  

  In the above control theories, a back-propagation neural network method is believed suitable to 

generate the proper drive signal after learning the dynamics of the whole system. This method can 

be described as follows. First, we use the neural network to learn the dynamic modeling of the 

unknown nonlinear system. The neural network can be interpreted based on the relationship 

between the input and output of the whole system. Then, the neural network generates the 

appropriate drive signal to achieve the desired performance. This method is called inverse modeling. 

It is not necessary to analyze the mathematical model of the system. Through many iterations we 

can obtain good performance in spite of the higher order and nonlinear system. 

 The nonlinear structure of the network is as close as possible to that of the neural network. In order 

to simplify the control problem, the LDI (Linear Differential Inclusion) notation is used to study the 

stability of large-scale nonlinear proportional systems. As we know, the evolutionary bat algorithm 

(EBA) can be used to solve the numerical optimization problem of swarm intelligence, improving 

the accuracy to find the best short-range solution, and shorten the calculation process. 

  Generally, the work of control strategies to improve vehicle riding comfort (especially active 

suspension) for such wheels is rarely concentrated on the control strategy. It is necessary to consider 

nonlinear systems and perform some operations in this area with certainty. The gray DGM model 

(2.1) is particularly appropriate for be writing no monotonic vibration sequences and it was widely 

applied in signal analyses (Shao and Su, 2012; Huang et al, 2016; Deshpande et al, 2014; Tsai et al, 
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2011; Chen, 2014; Chen et al, 2020). Therefore, in this study, the gray DGM model (2.1) is used to 

provide predictive information and increase the power of the system controller can make powerful 

to make the best for suspension control system (Chen et al, 2022). 

In short, the focus of this article is to announce the new features of elastic mechanics to avoid 

wheel failure, and to design a more efficient steering wheel to match the new wheels with 

suspension. In order to reflect the real situation, we consider the speed and uncertainty of the wheel 

and the suspension. To identify the continuity of best-in-class removal methods, gray signals are 

used to obtain future outputs. Finally, the statistical analysis evaluated the effectiveness and 

reliability of the proposed control model. 

The rest of this paper is organized as follows. The Section I describes the description of the 

system. In case of model errors, section I provides sufficient conditions for asymptomatic stability 

of nonlinear system. A numerical example with simulation is given to show the feasibility of our 

method in Chapter IV, and some of the concluding remarks are given to conclude the paper. 

Ⅱ. System Description  

Let 
(0)x  be a non-negative original data sequence, 

(0) (0) (0) (0)( (1), (2), , ( )),x x x x n   

and suppose that 
(1)x  is the first-order AGO sequence, 

(1) (1) (1) (1)( (1), (2), , ( )).x x x x n   

Then, by taking AGO on (0) (1),x x can be obtained by 

(1) (0) (0)

1

( ) ( ),
k

m

x k AGO x x m


     1 , 2 , , .k n   

( ) ( 1)

1

( ) ( ),
k

j j

m

x k x m



       1 , 2 , , .k n   

  Contrarily， (0)x can be obtained by taking IAGO on 
(1)x  as 
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(1) (1)

(0) (1)

(1)

( ) ( 1), 2,

(1), 1.

x k x k for k
x LAGO x

x for k

   
  



 

Let (1)z be the sequence obtained by applying MEAN generating  

operation, for simplify denoted by MEAN, to 
(1)x as 

(1) (1) (1) (1)( (2), (3), , ( ))z z z z n   

Then, 

(1)z MEAN  (1) (1){ ( ), ( 1)}x k x k  .  

The data generating operations are viewed as the first step in building a grey model (GM).  

Especially, AGO operation can be transformed the disorderly row data to the regular sequence, and 

find out the interval or hidden regular property of the original sequence, and then it also can weaken 

the randomness of the irregular sequence. 

The Grey Difference Equation of GM(1,1)  

x(0) (k)  az (1) (k )  u, 

is called a grey difference equation of GM(1,1),  where  a  and  u  are called the 

development coefficient and the grey input, respectively.  And the corresponding whitening 

equation is represented as follows 

  
( 1 )

( 1 )( )
( )

dy t
ay t u

dt
   

(1)
(0) (1) (1) ( )

( ) ( ) ( 1)
dy t

y k y k y k
dt

     

(1) (1)( ) ( )z k y t  

Proof. Assume 

(0) (1)( ) ( )x k az k kb    

For Y Ba , which gives the error sequence Y Ba   .Let 
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(0) (1) 2

2

( ) ( ) ( ( ) ( ) ) .
n

T T

k

S Y Ba Y Ba x k az k bk 


        

(0) (1) (1)

2

(0) (1)

2

2 ( ( ) az ( ) ) ( ) 0

2 ( ( ) ( ) ) 0.

n

k

n

k

s
x k k bk z k

a

s
k x k az k bk

b






   


     







 

 

Table 1 Nomenclature. 

  

The original state, as shown in Table 1, is described as the position without forces on the 

suspension and wheels. The direction and dynamics of the axis can describe the following (Chen, 

2021): 

1 2

2 1 1 1 2 2 2

3 4

4 1 1 1 2 2 2

5 6

6 1 1 1 1 1

1

7 8

8 2 2 2 2 2

2

1
[ ]

1
[ ]

1
[ ]

1
[ ]

k c k c

k c k c

k c t

k c t

x x

x F F u F F u Mg
M

x x

x F a F a u a F b F b u b
ly

x x

x F F u F m g
m

x x

x F F u F m g
m





       








     


 

     


 



    


.                      (1) 

So far, we consider the nonlinear distance between suspension and water wave, and the active 

suspension system with water wave is modeled. In the next part, we consider the suspension 

controller consists of an adaptive backstep control law, an ideal suspension motion generator and a 

gray signal predictor, which controls the suspension motion to check the ideal state, and the signal 

predictor is adjusted again as expected. state projected by control law. The control structure is 
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shown in Figure 1. For stable body, let us assume that there is ideal suspension movement. If the 

true vertical and pitching motion of the vehicle can track the required movement, the comfort of 

movement can be guaranteed. First , we describe the monitoring error. Lyapunov's error form can 

describe the following. 

1 3 2 41 3 2 4 1 3 2 4( , , , )V e e e e e e         2 41 1 2 3 3 4 2 4( ) ( )d de x x e x x           

2 41 1 1 1 1 2 3 3 3 3 3 4 2 4[ ( )] [ ( )]d d d de x x k e e x x k e                

2 2
2 41 1 3 3 2 1 4 3( ) ( )k e k e e e                                     .  (2) 

where e1, e3 denote the actual vertical motion compared with ideal suspension motion, and pitch 

motion of vehicle compared to the ideal suspension motion. δ is the differential form of e. 

Consider an NN model, S layers with 
qR (q=1,2,…,S) neurons for each layer, in which  

( ) ~ ( 1)x k x k m   are the state variables and ( ) ~ ( 1)u k u k n   are the input variables. 

The number of the layer is appended as a superscript to the names of the variables. Thus, the 

weight matrix of the qth  layer is written as 
qW . Then the final output of the NN model can be 

inferred as follows: 

1 1 2 2 2 1 1( 1) ( ( ( ( ( ( ))) )))S S S S Sx k W W W W Z k         …… ……      (3) 

Furthermore, based on the interpolation method and equation, we can obtain 

2 2
1 1 2

s 2 2
1 1 2

2 2 2 2
2 2

1 1 1 1

( 1) { ( ) ( ) ( , )( [ [ ( ) ( )s s
sR Rs

sR R

S S S S S

j j j j
j j j j

x k h k k G v W h k h k
   

     …h  

 

1 1
1 1

1 1
1 1 1

2 2
2 2 2 1 1 1 1 1

1

( , )( [ ( ) ( ) ( , )( ( ))])] ])}
R

R

j j
j j

G v W h k h k G v W Z k




       

( ) ( , ) ( )v v

v

h k J W Z k ,                                  

 

            (4) 

The dynamics of the NN model can be rewritten as the following LDI representation: 

1 1

( 1) ( ) ( ) ( ){ ( ) ( )}i i i i i

i i

x k h k J Z k h k A x k B u k
 

 

     ,    (5) 
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and iJ  is a constant matrix with the appropriate dimension associated with ( , )vJ W  .  

The final output of this fuzzy controller is inferred as follows: 

 
1

1

1

( ) ( )

( ) ( ) ( ),

( )

l

l

J

j j J
j

j jJ
j

j

j

w k K x k

u k h k K x k

w k







   





      

with 
1

( ) ( ( )),
p

j jw k M x k 


   

1

( )
( )

( )
l

j
j J

j

j

w k
h k

w k





              (6) 

in which ))(( kxM j   is the grade of membership of )(kx  in jM . In this study, it is also 

assumed that ,0)( kwj  and  0)(
1




lJ

j
jl kw for all k. Therefore, 0)( khj  and  1)(

1




lJ

j

j kh for 

all k. 

 

Fig. 1 LDI based grey prediction control model 

 

III. Evolved NN modeling and stability of frey signal predictor  

The desired ideal motion is obtained by good hybrid damping control.The virtual damping 

coefficient is given as the control signal. 

Watch the law of control, which includes monitoring errors and rate. If B=[p,ql,greyDGM(21) 

model can describe the following. 

(1) (0) (0) ( ) ,x px k q     B h Y  
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(0) (1) (0) (0) (0)

(0) (1) (0) (0) (0)

(0) (1) (0) (0) (0)

(2) 1 (2) (2) (1)

(3) 1 (3) (3) (2)
,

( ) 1 ( ) ( ) ( 1)

x x x x

x x x x
B Y

x n x n x n x n







      
     
        
     
     
       

         ( 7 ) 

Furthermore, the least square method is used to obtain  

1( )T T
a

B B B Y
u

  
  
 

 

where 

1 2 3

2

4 1

( 1)

( 1)

A A n A
a

n A A

 


 
, 2 4 1 3

2

4 1( 1)

A A A A
u

n A A




 
 

After assumption, the true value of the signal is measured in time. Due to the effect of random 

excitation on the levitation motion, we consider equation (8). 

(0) (0)
(0) (0) (0)

(0)

(0) (0)
(0) (0) (0)

( 1) ( 1) ( ) 5 ( ) ( 1)

( 1)

( ) ( 1) ( ) 5 ( ) ( 1)

x n x n x n x n x n

x n

x n x n x n x n x n

      


  
     


 (8) 

If the matrix P and the constant k  exist in inequalities: 

0 PPHH ij
T
ij ,   0)()1()1( max

1  
q

T
qij

T
ij HHPPPHH                (9) 

are satisfied for  , ,2 ,1 3i ; lj  , ,2 ,1 3 ., then the system is asymptotically stable.  

Proof:  

Let the Lyapunov function for the nonlinear system be defined as  

( ) ( ) ( )TV k x k Px k                                     (A.1) 

Where P  is a positive definite matrix. We then evaluate the backward difference of ( )V k on the 

trajectories to get 

( ) ( 1) ( ) ( 1) ( 1) ( ) ( )T TV k V k V k x k Px k x k Px k                           

1 1 1 1

{ ( ) ( ) ( ) ( )} { ( ) ( ) ( e( )} ( ) ( )
l l

T T
j ji ij i ij

i j i j

h k h k H x k e k P h k h k H x k x x k Px k
 

   

     ）          (A.2) 

Let 
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1 2 3 4

1 1 1 1

( ) ( ) ( ) ( ) ( ) { } ( )
l l

T T
ji ij

i j

h k h k h k h k x k H PH P x k m m m m
 

 
    

              (A.3) 

Where 

22

1 ( ) ( ) ( ) ( ) ( ),
l

T T
ji ij ij

i j

m h k h k x k H PH P x k


  

   


 




 


i

l

j

Ŭ j
T
ij

T
ji kkkhkhkhm )()()()()()( 2

2 xPPHHx  


 




 


i

l

j

ij
T
Ŭ jŬ j

T
ij

T
ji kkkhkhkh )(}2{)()()()( 2 xPPHHPHHx , 


 




 


i

l

j

i
T
ij

T
ji kkkhkhkhm )()()()()()(2

3 xPPHHx  


 




 


i

l

j

ij
T
ii

T
ij

T
ji kkkhkhkh )(}2{)()()()(2 xPPHHPHHx , 


 




 


i

l

j

T
ij

T
ji kkkhkhkhkhm )()()()()()()(4 xPPHHx  


 




 


i

l

j

ij
TT

ij
T

ji kkkhkhkhkh )(}2{)()()()()( xPPHHPHHx . 

Therefore, we have 


 




 


i

l

j

ij
T
ijŬ jij

T
Ŭ jij

T
ji kkhkhkhm PPHHHHPHHx ][][{)()()()( 2

2  

)(} kŬ j
T
Ŭ j xPPHH  0       for  i ; lj  , ,13  .         (A.4) 

In similar fashion 

03 m  and 04 m .                           (A.5) 

Substituting (A.4) and (A.5) into (A.3) yields 


   


 

 


1 1 1 1

)(}{)()()()()(
i

l

j

l
T
ij

T
ji kkkhkhkhkh xPPHHx  


 




1 1

)()()()()(
i

l

j

ij
T
ij

T
ji kkkhkh xPPHHx .                          (A.6) 

From (A.6) and (A.2), we have 


 




1 1

)()()()()()(
i

l

j

ij

T

ij

T

ji kkkhkhkV xPPHHx  


 




1 1

)}()()()(){()(
i

l

j

ij
TT

ij
T

ji kkkkkhkh xPHePeHx )()( kk T Pee .     (A.7) 

Since P is a positive definite matrix, it follows that 

0))()(())()(( 2

1

2

1

2

1

2

1




kkkk ij
T

ij exHPexH   
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0)()()()()()()()( 1   TT
ij

TT
ij

T
ij

T
ij

T kkkkkkkk PeexPHePeHxxPHHx   

TT
ij

T
ij

T
ij

TT
ij

T kkkkkkkk )()()()()()()()( 1 PeexPHHxxPHePeHx   . 

Therefore, we obtain 


 




1 1

)(}{)()()()(
i

l

j

ij

T

ij

T

ji kkkhkhkV xPPHHx  


 





1 1

)(})1{()()()(
i

l

j

ij
T
ij

T
ji kkkhkh xPPHHx )()()()1( max

1 kk T eeP  .(A.8) 

From (A.8) we can get 


 





1 1

)1{()()()()(
i

l

j

ij

T

ij

T

ji kkhkhkV PPHHx )(})()1( max
1 kq

T
q xHHP  . (A.9) 

The closed-loop nonlinear system is asymptotically stable. 

Based on Eqs. (5-6), we have 

1 1

( 1) ( ) ( )( ) ( )
l

ji i i j

i j

x k h k h k A B K x k


 

  
1 1

{ ( ( )) ( ) ( )( ) ( )}
l

ji i i j

i j

F x k h k h k A B K x k


 

    

1 1

( ) ( ) ( ) ( )
l

ji ij

i j

h k h k H x k e k


 

                    

where 

ij i i jH A B K  , i

1 1

( ) { ( ( )) ( ) ( ) ) ( )}
l

ji i j

i j

e k F x k h k h k A B K x k


 

   （  

which denotes the modeling error between the closed-loop nonlinear system and the closed-loop 

NN system. 

Suppose that there exits a bounding matrix ijH   such that 

1 1

( ) ( ) ( ) ( )
l

ji ij

i j

e k h k h k H x k


 

                     

for all trajectories ( )x k  and the bounding matrix ijH  can be described by ij ij qH H                               

where 1 ij , for 1,2,i  …,  and 1,2,j  …, l , and the modeling error is bounded by the 

specified structured bounding matrix qH . 
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Therefore, we can obtain 
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The procedures for determining ij  and qH  are described by the following simple example. 

Assuming that the possible bounds for all elements in ijH  are 













ijij

ijij

ij
hh

hh

2221

1211H  

where rs

ij

rsrs h    for some rs  and 2 ,1 , sr . 

One possible description for the bounding matrices ijH  is 

qijij

ij

ij HH 
























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2221

1211

22

11

0

0
 

where 11  ij

rr  for 2 ,1r . It is noticed that ij  can be chosen by other forms as long as 

1 ij . 

The EBA is hereby proposed with the bat echolocation complex fuzzy system which appears in 

the practical world. Unlike other intelligence swarm algorithms, the advantage of EBA is good to 

solve the practical problem. The choice of different media determines search step. In the present 
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study, that exists in the practical environment. EBA's function is summarized by some steps:  

a. Initialization: distribute artificial reagents by random assignment in the solution chamber. 

b. Movement: The artificial sample is moved. Generate a random number and check if it is greater 

than the fixed heart rate. If the result is positive, you can move the artificial remedy on a random 

walk 

1t t

i i
x x D 

,  

where 
1t

i
x 

 the coordinate of the i-th artificial agent at the last iteration; 
t

i
x  the coordinate of the 

i-th artificial agent at the t-th iteration; and D the distance that the artificial agent moves in this 

iteration. 

Thus,
ȹD T 

,  

where ȹ [ 1, 1]T   a random number.   a constant corresponding to the medium chosen in the 

experiment; and 0.17   in our experiment because the chosen medium is air. 

 best

Rt t

i i
x x x 

,  0,  1 
,  

where best
x  indicates the coordinate of the near best solution found so far throughout all artificial 

agents;   is a random number; and 
Rt

i
x  represents the new coordinates of the artificial agent after 

the operation of the random walk process. 

c. Evaluation: calculate the suitability of the artificial remedy using a custom suitability function, 

and update it to the best stored solution. 

d. Termination: The termination status is checked to determine if you want to return to STEP 2 or 

end the program shortly and generate the best solution. 

The evaluation criteria for determining the condition of the club are based on a user-defined 

training function. In this article, the training function is used to get the usual symmetrical 

positive final matrix and control power to the control. 

In general, intelligence swarm algorithms have multiple iterations to find an almost optimal 

solution. Therefore, the same experiment is chosen to airy in which bats live. The total size 

indicates solution area for each iteration. We determine the total number and size of possible 

solutions that are considered sufficient to determine the parameters of the complex cloudy system in 

the application. 

4. Example 

The fact is that all states in continuous functions of time. When the step is small enough, then 

we could also conclude that the state is practically unchanged. The Tstep time in DGM (2.1) must 
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make control stable and limited. The previously designed controller receives the status of the gray 

signal predictor to stabilize the motion of the MEW-equipped active suspension. To further test the 

effectiveness of the controller, a set of movement data is used to test the accuracy of the DGM (2, 1) 

model with a number of signal sequences set to 6 and the step time to 0.001s. The practical results 

are listed in Figure 2, where the difference between the exact data and the forecast from the DGM 

(2, 1) is very small. If the data changes drastically, the surface model's tracking error (2.1) increases, 

but may meet the technical requirements. Therefore, the reliability of DGM (2.1) is guaranteed. 

The weight matrices are meant by 1W  and 2W . The weights could be given and we obtain 

)()1()( 1
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1

2

1

1

1 kuWkxWkxWv rrrr  , )T()T()T( 1
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2
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2

2
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11
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1vkx                                 

2

12

2

121

2

11 ))()(()1( vgkhgkhkx  



2

1

2

1

2

1 )(
i

ii vgkh .              (10) 

Moreover, the NN model can be converted into the following LDI representation by renumbering 

the matrices: 





8

1

))()()(()1(
i

iii kukkhk BxAx

              (11) 

where 

1 1jps 2111

0 0
=

1 0
A A A

 
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 
, , , 1, 2j p s  , 2 2112
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A A
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   

 
 

3 2121

1.5528 0.5115

1 0
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 
   

 
, 4 2122

1.3940 2.0675

1 0
A A

 
   

 
 

5 2211

0.9061 0.5214

1 0
A A

 
   

 
, 6 2212

2.0407 2.0774

1 0
A A

 
   

 
 

7 2221

0.1588 2.5790

1 0
A A

 
   

 
, 8 2222

0.4879 2.5889

1 0
A A

 
   

 
  (12) 

The profile of the stepped pavement is shown in Figure 3 (a). As seen in Figs. 3 (b), when road 

turbulence occurs, the active suspension control force appears within 1 s. In figures 3 (c) and 3 (d), 

the vertical shift and pitching shift of the vehicle body under of the input step is described. The 

motion amplitude of the controller with gray signal predictor is smaller than without controller. 
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Fig. 2. The random data and proposed fuzzy DGM (2,1) model. 

 

              (a) Step road profile                          (b) Control signals u1 &u2  

 

             (c) Vertical displacement of car                      (d) Pitch motion  

 

Fig. 3. Control force simulation for predictors. 

 

Figs. 4-7 are the modeling error which have been bounded via the assumption of LDI based 

approximation with control via NN model. Furthermore, the assumption of 
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 are satisfied from the illustration in Figs. 4-7.   
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Ⅴ.  Conclusion 

This paper describes a new assumption system, demonstrated by the gray model that assisted the 

LDI neural network, that uses GM (1,1) to predict signals and learns the error of assuming DGM 

(2,1). They combine the outputs of DGM (2,1) and NN after time conversion. The simulation results 

show that the effectiveness of the intelligent prediction system is better than that traditional way. 

Therefore, it laid a basic foundation for the integration of the active suspension system in the MEW. 

First, through experimental processes. We considered the nonlinear nature of the active suspension 

Fig.4. The model error of the vertical displacement of car with control.  
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Fig. 5. The model error of pitch motion with control.  
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Fig. 7. The model error of the vertical displacement of rear wheel with control.  
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and Lyapunov's theory, the law of control for the estimation of ma hardness and damping force 

parameters and the monitoring of the ideal suspension motion are mentioned. The stability and 

system probability is proved by Lyapunov such theorem. In addition, the gray DGM (2,1) model is 

implemented in the controller to assume the suspension movement in advance. The simulation 

results showed that the proposed method can be without synoptic stabilize the discrete-time 

nonlinear system. By finding the solution of controlled systems, the advantages of the EBA model 

also provide flexibility and possibility.  

Compliance with Ethical Standards 

The author declares that there are no conflicts of interest regarding the publication of this paper. 

All analyzed data during this study are included in this article. 

References 

Andert, J., Herold, K., Savelsberg, R., & Pischinger, M. (2017). NVH Optimization of Range 

Extender Engines by Electric Torque Profile Shaping. IEEE Transactions on Control Systems 

Technolog ,25,1465-1472. 

Chen, C. (2014a). Interconnected TS fuzzy technique for nonlinear time-delay structural 

systems. Nonlinear Dynamics, 76, 13-22. 

Chen, C. (2014b). A criterion of robustness intelligent nonlinear control for multiple time-delay 

systems based on fuzzy Lyapunov methods. Nonlinear Dynamics, 76, 23-31. 

Chen, T., Rao, S., Sabitovich, R.T., Chapron, B., & Chen, C.Y. (2020). An Intelligent Algorithm 

Optimum for Building Design of Fuzzy Structures. Iranian Journal of Science and Technology, 

Transactions of Civil Engineering, 44, 523-531. 

Chen, T., Babanin, A.V., Muhammad, A., Chapron, B., & Chen, J.C. (2020). Evolved Fuzzy NN 

Control for Discrete-Time Nonlinear Systems. J. Circuits Syst. Comput., 29(1), 2050015. 

https://doi.org/10.1142/S0218126620500152  

Chen, T., & Chen, J.C. (2020). On the Algorithmic Stability of Optimal Control with Derivative 

Operators. Circuits Syst. Signal Process., 39, 5863-5881. 

Chen, T., Kapron, N., & Chen, J.C. (2020). Using Evolving ANN-Based Algorithm Models for 

Accurate Meteorological Forecasting Applications in Vietnam. Mathematical Problems in 

Engineering. DOI10.1155/2020/8179652. 

Chen, T., Kau, D.D., Tai, Y.S., & Chen, C. (2020). LMI based criterion for reinforced concrete 

frame structures. Advances in concrete construction, 9(4), 407-412.  

Chen, T., (2021). Smart structural stability and NN based intelligent control for nonlinear systems, 

Smart Structures and Systems, 27(6) ,917-926. 

Chen, Z.Y., Meng, Y., Wang, R.Y., and Chen, T. (2021). Apply a robust fuzzy LMI control scheme 

with AI algorithm to civil frame building dynamic analysis, Computers and Concrete, 28 (4) 

433-440. 

https://doi.org/10.1142/S0218126620500152


Journal of Engg. Research Online First Article 

 

18 

 

Chen, Z.Y. (2021). Grey Signal Predictor and Evolved Control for Practical Nonlinear Mechanical 

Systems, The Journal of Grey System 33(1), 156-170. 

Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2021). Smart structural control and analysis 

for earthquake excited building with evolutionary design, Struct. Eng. Mech., 79(2), 131-139. 

https://doi.org/10.12989/sem.2021.79.2.131. 

Chen, T., Crosbie, R.C., Anandkumarb, A., Melville, C., & Chan, J. (2021). Optimized AI controller 

for reinforced concrete frame structures under earthquake excitation. Advances in concrete 

construction, 11(1), 1-9. 

Cisija-Kobilica, N., Avdakovic, S., Hivziefendic, J., & Kobilica, A. (2019). Smart transmission 

system: a new approach for the fault identification, localization and classification in the power 

system. The Journal of Engineering Research, 7 (2) , 259-280. 

Chen, T., Huang, Y.C., Xu, Z., & Chen, J.C. (2021). Wind vibration control of stay cables using an 

evolutionary algorithm. Wind and Structures, 32, 71-80. 

Chen, T., Kapronand, N., Hsieh, C., & Cy Chen, J. (2021). Evolved auxiliary controller with 

applications to aerospace. Aircraft Engineering and Aerospace Technology. 93(4), 529-543. 

Chen, T., Kuo, D., & Chen, C.Y. (2021). Fuzzy C-means robust algorithm for nonlinear 

systems. Soft Comput., 25, 7297-7305. 

Charfeddine, S., & Jerbi, H. (2021). A Benchmarking analysis of analytical and advanced nonlinear 

tracking control techniques. Journal of Engineering Research. 9 (3A) , 250-267. 

Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2022). Stochastic Intelligent GA Controller 

Design for Active TMD Shear Building, Struct. Eng. Mech., 80(1). 

Chen, Z.Y., Meng, Y., Wang, R.Y., and Chen, T. (2022). Systematic Fuzzy Navier-Stokes Equations 

for Aerospace Vehicles. Aircraft Engineering and Aerospace Technology. Forthcoming. 

Cho, H.R., Kim, S., & Kim, M. (2017). Multiple quantile regression analysis of longitudinal data: 

Heteroscedasticity and efficient estimation. J. Multivar. Anal., 155, 334-343. 

Deshpande,V.S., Mohan,B., Shendge, P.D.,& Phadke SB. (2014). Disturbance observer based 

sliding mode control ofactive suspension systems. Journal of Sound and Vibration. 

333(11).2281-2296 

Huang, Y., Wang, C., Dang, H., & Lai, S. (2016). Evaluating Performance of the DGM(2,1) Model 

and Its Modified Models. Applied Sciences, 6, 73.  

Kawamoto, Y., Suda, Y., Inoue, H., & Kondo, T.(2008). Electro-mechanical suspension system 

considering energy consumption and vehicle manoeuvre. Vehicle System Dynamics, 46,1053 - 

1063. 

Kilicaslan, S. (2018). Control of active suspension system considering nonlinear actuator 

dynamics. Nonlinear Dynamics ,91,1383-1394. 

Moreno Ramírez, C., Tomas-Rodriguez, M., & Evangelou, S.A. (2018). Dynamic analysis of 

double wishbone front suspension systems on sport motorcycles. Nonlinear Dynamics ,91, 

2347-2368.  

Shao, Y., & Su, H. (2012). On Approximating Grey Model DGM(2,1). AASRI Procedia, 1, 8-13.  

Sun, X., Zhang, H., Meng, W., Zhang, R., Li, K., & Peng, T. (2018). Primary resonance analysis and 

vibration suppression for the harmonically excited nonlinear suspension system using a pair of 

symmetric viscoelastic buffers. Nonlinear Dynamics, 94,1243-1265. 

Singh, N.M., Pratap, B., & Swarup, A. (2019). Nonlinear robust observer based adaptive control 

design for variable speed wind turbine. The Journal of Engineering Research, 7 (3), 258-285. 



Journal of Engg. Research Online First Article 

 

19 

 

Tsai, P., Pan, J., Liao, B., Tsai, M., & Istanda, V. (2011). Bat Algorithm Inspired Algorithm for 

Solving Numerical Optimization Problems. Applied Mechanics and Materials, 148-149, 134 - 

137. 

Xiangyang, X., Siqi, Z., & Peng, D. (2017). Engine-start Control Strategy of P2 Parallel Hybrid 

Electric Vehicle. Materials Science and Engineering ,280 012029 

doi:10.1088/1757-899X/280/1/012029 

Zhang, H., & Wang, J. (2017). Active Steering Actuator Fault Detection for an 

Automatically-Steered Electric Ground Vehicle. IEEE Transactions on Vehicular Technology, 

66,3685-3702. 


