New airfoils for micro horizontal-axis wind turbines

DOI: 10.36909/jer.10949

Manoj Kumar Chaudhary*, S. Prakash

Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India

*Corresponding Author: manojzf2011@gmail.com

ABSTRACT

In this study, small horizontal-axis wind turbine blades operating at low wind speeds were optimized. An optimized blade design method based on blade element momentum (BEM) theory was used. The rotor radius of 0.2 m, 0.4 m and 0.6 m and blade geometry with single (W1 & W2) and multistage rotor (W3) was examined. MATLAB and XFOil programs were used to implement to BEM theory and devise a six novel airfoil (NAF-Series) suitable for application of small horizontal axis wind turbines at low Reynolds number. The experimental blades were developed using the 3D printing additive manufacturing technique. The new airfoils such as NAF3929, NAF4420, NAF4423, NAF4923, NAF4924, and NAF5024 were investigated using XFOil software at Reynolds numbers of 100,000. The investigation range included tip speed ratios from 3 to 10 and angle of attacks from 2° to 20°. These parameters were varied in MATLAB and XFOil software for optimization and investigation of the power coefficient, lift coefficient, drag coefficient and lift-to-drag ratio. The cut-in wind velocity of the single and multistage rotors was approximately 2.5 & 3 m/s respectively. The optimized tip speed ratio, axial displacement and angle of attack were 5.5, 0.08m & 6° respectively. The proposed NAF-Series airfoil blades exhibited higher aerodynamic performances and maximum output power than those with the base SG6043 and NACA4415 airfoil at low Reynolds number.

Key words: Blade geometry; 3D printer; Power coefficient; Solidity; Tip speed ratio.
INTRODUCTION

Energy is the foundation for economic and social development. Wind is a renewable energy source used by wind turbines to generate electricity. The small horizontal-axis wind turbine requires a minimum wind speed of 4.2 m/s using an optimized blade, which could reduce the starting rotor speed without external force allowing it to be used in roadside or housetop applications. (Lee et al., 2016; Ismail et al., 2018; & Abrar et al., 2014). The torque-producing power was obtained mainly from the tip region of the turbine blade (Wright and Wood, 2004; Clifton and Wood, 2007). The Blade Element Momentum (BEM) model offers excellent accuracy and high computational efficiency for the blade design calculation of propeller performance. The maximum power coefficient value of 0.371 for the rotor tested and 0.388 for the optimized rotor is achieved at wind speed of 6 m/s approximately (Gur and Rosen, 2008; Hassanzadeh et al., 2016). Blade element momentum (BEM) and computational fluid dynamics (CFD) were analyzed from three different turbulence models. For rural applications, a 2-kW small horizontal axis wind turbine with a rotor radius of 1.8 m and a tip speed ratio (TSR) of 6 at low wind speed was examined (Chaudhary and Prakash, 2019; Suresh and Rajakumar, 2019). (Rosenberg et al., 2014) proposed and investigated a dual-rotor turbine design. A smaller, aerodynamically tailored, secondary co-axial rotor is mounted ahead of the main rotor in this dual rotor concept. (Nugroho et al., 2019) studied the multi-stage wind turbine was better than the single rotor at the same tip speed ratio and optimum (X/D) axial distance ratio is 0.18. Sustainable development is one of the main objectives of future planning. It corresponds energetically to higher energy efficiency and the use of renewable energy sources. The manufacturing method required a rapid prototype of the various iterations of blade designs (Poole and Phillips, 2015; Duquette and Visser, 2003; Singh and Ahamed, 2013). The main objectives of this present study are to creations and investigate of the novel airfoil for small wind turbine with single and multi-stage rotors at low Reynolds numbers. For the
experimental investigations in this research, the wind tunnel experiments were performed to measure the power of 3 & 6 bladed rotor blades at various wind speeds and blade pitch angles. The rotor blade material used is acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) fabricated by using the fused deposition method (FDM). The main objectives of this paper can be listed as follows:

• Investigate the aerodynamic performance and development of new airfoil of NAF3929, NAF4420, NAF4423, NAF4923, NAF4924, and NAF5024 designed for small wind turbines at low Reynolds number.

• Experimental & numerical investigation of small HAWT blades for single and multistage rotors for different airfoils, axial displacement with different solidity.

• Obtain the small wind turbine parameters, output power, blade pitch angle, power coefficient, blade geometry and solidity for various wind turbine models.

• Optimize the geometrical dimensions of the NAF4923 airfoil to increase the wind turbine performance.

AIRFOIL AND BLADE DESIGN METHODOLOGY

The investigations and development of airfoils based on the thickness to camber ratios. The Xfoil has been used in the selection of airfoil processes to simulate and analyze a number of existing Low-Re HAWT airfoils. The SG6043 and NACA4415 airfoils were selected from literature and Xfoil results for comparisons of aerodynamic performances of new airfoils. The new airfoil is designated as NAF. In this work, airfoil were designed and optimized such as NAF3929, NAF4420, NAF4423, NAF4923, NAF4924, and NAF5024 for application of small horizontal axis wind turbine rotors. (Jayapriya et al., 2019) studied the multi-rotor design can be used to increase power generation at locations where space is small.
Airfoil is one of the most important parameters of the rotor blade design and development. In order to enhance the power coefficient and torque generated, the lift-to-drag ratio for the airfoil must be amplified (Chaudhary and Roy, 2015; Singh and Ahmed, 2012). The 251 panels were considered for analysis of aerodynamic characteristics of airfoils by using Xfoil software as depicted in Fig. 1. The geometric shapes of the new airfoil showed significant changes, the thickness-chamber ratios and the leading edge radius, the Reynolds number and the Ncrit were independently modified, and then by combinations of the maximum lift coefficient and the lift-drag ratios. The aerodynamic performance of six new airfoils geometries were compared as existing low Re airfoils. SG6043 and NAF4923 airfoil exhibited an outstanding C_L/C_D ratio which is necessary to maximize the power output. The SG6043 has a maximum thickness of 10%, which may cause high stress levels near the root. The new airfoil NAF4923 had a thickness of 12.80%, with the maximum thickness position of 29.70%, maximum camber of 5.71%, with the maximum camber position of 41.90% relative to the chord length. The lift coefficients of the new airfoil (NAF series) are larger than that of the NACA4415 and SG6043 airfoil. The new airfoil achieved a maximum C_L/C_D ratio at angle of attack = 5° to 6°, whereas the SG6043 airfoil achieved a maximum C_L/C_D at an angle of attack between 6° to 7°. However, NACA4415 airfoil, the maximum C_L/C_D ratio was obtained approximately at α of 7° for a Reynolds number of 1 × 10^5. The 3 different blade model with rotor radius of 0.2 m, 0.4 m and 0.6 m with different rotor solidity respectively were investigated are presented in Tab. 1. The design of rotor blade & airfoil with optimum axial distance between two rotors are illustrated in Fig. 2 & Fig. 3. The optimum axial distance ratio is 0.18 (Nugroho et al., 2019).
Table 1 Wind turbine blade specification

<table>
<thead>
<tr>
<th>Rotor type</th>
<th>Rotor radius (m)</th>
<th>Solidity</th>
<th>Airfoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0.2</td>
<td>0.1181</td>
<td>NAF4923</td>
</tr>
<tr>
<td>R2</td>
<td>0.4</td>
<td>0.1463</td>
<td>NAF4923</td>
</tr>
<tr>
<td>R3</td>
<td>0.6</td>
<td>0.0523</td>
<td>NAF4923</td>
</tr>
</tbody>
</table>

Figure 1 Airfoils generation in Xfoil software: NAF3923, NAF4420, NAF4423, NAF4923, NAF4924, NAF5024, NACA4415 and SG6043

Figure 2 Flow chart of the methodology used airfoil selection, blade design and rotor testing
MODELING AND ANALYSIS

The small wind turbine blade for a rotor with solidity of 11.81%, 14.63% and 5.23% which was manufactured using the ABS and PLA material, with FDM method was studied for optimization and experimentations at different blade pitch angle are presented in Tab. 1. The selection of rotor radius with respect to wind speed at Reynolds number of 100,000 are illustrated in Fig. 4. The optimized blade geometry of Rotor R1, R2 and R3 as shown in Fig. 5. The variations of the twist angle with sectional blade length at $\lambda = 6$ for new airfoil $B = 3$ as presented in Fig. 6, for rapid prototype fabrications. The R1, R2 and R3 of Xfoil and 3D printed optimization blade model as shown in Fig. 7. The R2 blades were designed for higher solidity however the R3 model optimized at lower solidity. The rotor performance investigated using XFoil. The optimization 3D printed W1 and W2 fabricated with FDM method as shown in Fig. 7. The single-stage rotor was designated as W1 and W2 however W3 rotor designated for multistage wind turbine rotor. The rotor arrangement for experimentations is depicted in Tab. 2. The calculation procedure was according to which enables calculating the optimum blade geometry of small wind turbine, including its aerodynamic performance [Ismail et al., 2018; Chaudhary and Roy, 2015]
Figure 4 Selections of rotor radius

Figure 5 Optimum blade geometry of 0.2m, 0.4m and 0.6m rotor radius (a) Chord distribution along the blade length (b) Blade twist distribution along the blade length

Figure 6 Optimum blade model (a) R1 (b) R2 (c) R3
Table 2 Rotors configuration for experimentations

<table>
<thead>
<tr>
<th>Blade types</th>
<th>Rotor types</th>
<th>Rotor radius (m)</th>
<th>Number of blades</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>W1</td>
<td>0.2</td>
<td>3</td>
<td>ABS</td>
</tr>
<tr>
<td>R2</td>
<td>W2</td>
<td>0.4</td>
<td>3</td>
<td>PLA</td>
</tr>
<tr>
<td>R1 & R2</td>
<td>W3</td>
<td>(R_f = 0.2) & (R_r = 0.4)</td>
<td>6</td>
<td>ABS & PLA</td>
</tr>
</tbody>
</table>

Figure 7 Three dimensional geometry of blade model (a-b) R1 & R2 blade optimized in Cura software (c-d) 3D printed blade model of R1 & R2

EXPERIMENTATIONS

The small wind turbine blade geometries and design parameters are presented in Tab. 3. The new airfoil model created in Xfoil software as shown in Fig. 8. The airfoil model and rotor blade are fabricated by wooden, printing ABS and PLA filaments materials respectively as shown in Fig. 9. The creo models were transformed from the format into G code using cura software and imported to the 3D printer. The printer was run under the following conditions; printing resolution was set to 0.001 m, nozzle temperature was adjusted to 205°C, bed temperature was 60°C and the printing speed was tuned to 50 mm/s. The fabrication of the blade by using the new NAF4923 airfoil is illustrated in Fig 7. The experiments were conducted in an open wind tunnel in the fluid mechanics laboratory at the Dr. D. Y. Patil School Engineering India affiliated to the SPPU University. Fig. 10 (a-b) & Fig. 11 (a) shows the tests stands used in the fabrication and experiment for wind turbine blades. The wind tunnel has a test section of 0.3 m × 0.3 m ×1 m. Technical instrumentation specifications as shown in
Tab. 4. The experimental tests have been conducted to determine output power of rotor (W3) at axial displacement of 0.04m, 0.06m & 0.08m at different wind speeds in wind tunnel.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base airfoil selection</td>
<td>SG6043 & NACA4415</td>
</tr>
<tr>
<td>Angle of attack (α)</td>
<td>2° to 20°</td>
</tr>
<tr>
<td>Tip speed ratio (λ)</td>
<td>2 to 8</td>
</tr>
<tr>
<td>Solidity (σ)</td>
<td>0.0523 to 0.1463</td>
</tr>
<tr>
<td>New airfoil series</td>
<td>NAF</td>
</tr>
<tr>
<td>Reynolds No.</td>
<td>100000</td>
</tr>
<tr>
<td>Rotor radius</td>
<td>0.2 m, 0.4m & 0.6m</td>
</tr>
</tbody>
</table>

Figure 8 Airfoil model created in Xfoil

Figure 9 Experimental setup (a) Controller unit (b) 3D printer (c) Wind tunnel

Table 4 Test instrument details for experimentations

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Model number</th>
<th>Measurement range</th>
<th>Resolutions</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemometer</td>
<td>AVM-06</td>
<td>0.5–30 m/s</td>
<td>0.1 m/s</td>
<td>0 – 60 °C</td>
</tr>
<tr>
<td>Tachometer</td>
<td>HTM-560</td>
<td>10 to 1000 rpm</td>
<td>0.1 rpm</td>
<td>0 – 60 °C</td>
</tr>
<tr>
<td>Multi-meter</td>
<td>AVF-19N</td>
<td>0.2 – 230 V</td>
<td>0.1 volt</td>
<td>0 – 60 °C</td>
</tr>
<tr>
<td>Wind tunnel</td>
<td>WT-02</td>
<td>1 -30 m/s</td>
<td>1 m/s</td>
<td>0 – 60 °C</td>
</tr>
</tbody>
</table>

0.075 to 0.3 m, operating temperature: 0 to 60 °C. In this work, the co-axial series rotors wind turbines with two rotors are considered as shown in Fig. 11(b). Fig. 12, Shows set up of inverter battery system. The decrease in wind speed causes the torque generated by the second rotor increases from torque that generated by the first rotor to compensate for the rotation of the first rotor. High torque increases mechanical power generated by the second rotor at lower wind power.
RESULTS AND DISCUSSIONS

The results of the numerical and experimental investigations for all cases are presented in this section. Experimental cases of single & multistage wind turbine rotor with wind velocity from the cut-in speed (2.5 to 3 m/s) to the rated wind speed (8 m/s) and the configurations of the rotor blade pitch angles vary from 0° to 90°. The MATLAB code of blade design is provided in A1 (Appendix).

AIRFOIL EFFECTS ON ROTOR PERFORMANCES

The NAF-Series airfoil was compared with SG6043 and NACA4415 base airfoil for low Reynolds number application for small horizontal axis wind turbines. The new airfoils were designed and tested with Xfoil at Re = 100000. The AF300 airfoil was optimized from existing low Reynolds number airfoils using Xfoil software (Singh et al. 2012). For each
airfoil, the polar curves were obtained for angle of attack, α varying from 0° to 20° to satisfy all velocity conditions of the investigated airfoils. Figs 13(a-b), show the graphs of lift and lift-to-drag ratio for the 8 airfoil at $\text{Re}=100000$. From Fig 13(a), it was observed that the lift coefficient values are strongly influenced by the angle of attack (α). From the results graph it can be observed that, NAF-Series airfoil which has highest lift coefficient values in the angle of attack ranges of 8°-12°. From the results graph, it can be observed that, NAF4420 and SG6043 airfoil produces maximum C_L of 1.6 and 1.65 at angle of attack, α of 12° & 14° respectively. NAF4924 airfoil produces maximum C_L of 1.5 at α of 16°, after 12° angle of attack, the value of C_L for NAF airfoil decreases upto angle of attack, $\alpha =16^\circ$ except NAF4924 airfoil, beyond 16° angle of attack the value of $C_L =$1.35 - 1.5 remains constant upto 20° angle of attack. Airfoils NAF3929, NAF 4420, NAF4423, NAF4923, NAF4924, NAF5024, SG6043 and NACA4415 had maximum C_L of 1.35, 1.6, 1.5, 1.55, 1.5, 1.5, 1.65 and 1.48 at angle of attack, α of 12°-16°. The airfoils NAF4923, NAF4924 and SG6043 showed soft stall behaviour in the angle of attack range of 12°-16°. The maximum value of the lift-drag ratio for the new airfoil was observed at an angle of attack of 5°-6° at $\text{Re} = 100,000$ except NAF3929.

The NAF3929, SG6043 and NACA4415 have maximum lift-to-drag ratio at angle of attack 8°, 7° and 10° respectively. The lift coefficient of the NAF4923 airfoil was 10-15 % higher than that for the SG6043 airfoil because of the large camber and thickness, as depicted in Figs. 13 (a-b), at the angle of attack 2°-10°. The high lift coefficient and its high AOA, α at low speeds facilitated the rotor start up and enhanced its performance at low wind velocities, thus providing adequate characteristics when used in small power rotors. Fig 13(b), shows the variation of lift-to-drag ratio (C_L/C_D) for different airfoils at a Low Reynolds number $=100,000$. Maximum lift-to-drag ratios (C_L/C_D) of 69 were produced by NAF4923 and NAF4924 airfoil at α of 6° & 5° respectively, followed by SG6043 and NACA4415 airfoil of 66 and 48 at α of 7° & 10° respectively. Airfoils NAF3929, NAF4420, NAF4423, and NAF5024 have maximum lift-to-drag ratio (C_L/C_D) = 49, 66, 66.5 and 68 respectively at $\alpha= 8^\circ$, 11
5°, 6° and 6° respectively. The NAF4923 and SG6043 airfoils produced lowest values of C_L/C_D ratios of 40 and 35 at angle of attack, $\alpha= 2^\circ$ respectively. Finally, from the obtained results of Xfoil, It was found that the NAF4923, NAF4924 and SG6043 airfoils had their peak values of lift-to-drag ratios producing at particular α value, while NAF5024 and NACA4415 airfoils, has a wide range of C_L/C_D ratios and showed a soft stall behavior in the, angle of attack, α range of 2°-10°. It was seen that the NAF-Series airfoil is the best profile for small horizontal axis wind turbines al low Reynolds number application. The maximum value of the C_L/C_D ratio for the designed and optimized airfoil was observed at an AOA(angle of attack) of 5° to 6° at Reynolds number $=100,000$. We had investigated the effect of the airfoil section on the aerodynamic performance of the various small wind turbine rotors. The proposed airfoil was thicker than the SG6043 airfoil. From Fig. 14, indicates the influence of airfoil on the blade performances. As it can be seen by maximum power coefficient obtained by NAF4923 and SG6043 at $\lambda= 5$. The The BEMT-based design program was developed for tip speed ratios ranging from 2 to 8. The $C_p-\lambda$ curve was obtained using Xfoil software.

The solidities of 5.23 % with variable chord and twisted blade geometry were analyzed at Re=100,000 of NAF4923 and SG6043 with and without root-tip losses for blade numbers, B=3, and the results are illustrations in Fig 14. From Fig. 14, maximum power coefficient of R3 blade model had 0.515 and 0.46 for without and with root-tip losses at $\lambda = 5$. The values of λ increase from 5, the values of power coefficient of SG6043 airfoil deceases as compared to the NAF4923 airfoil. Hence we have selected novel airfoil NAF4923 for blade fabrications and experimentations. The variation of output power of R1 rotor as shown in Fig. 15. The optimum blade pitch angle are 30° of the rotor R1.
Figure 13 Variations of aerodynamic performances of different airfoil (a) C_L vs α (b) C_L/C_D vs α

Figure 14 Variations of power coefficient of NAF4923 and SG6043 airfoil of R3 blade model with and without blade root and tip losses
Figure 15 Variation of output power versus angular velocity of R1 rotor with optimum axial displacement of 0.08m at different blade pitch angle (a) 15° (b) 30° (c) 45°

SOLIDITY EFFECT ON ROTOR PERFORMANCES

The solidity is one of the most important factor which greatly affects the performance of the horizontal axis wind turbine (HAWT) Fig. 16, indicates the influence of rotor solidity on the blade performances and tip speed ratios. It can be observed that the Cp values increase with a maximum tip speed ratio up to 4 for rotor R1 and R2 with solidity = 11.81% and 14.63% respectively and then decreases, moreover the R3 blade model had maximum value of Cp obtained at $\lambda=5.5$. The main effect to observe of changing the solidity with respect to tip speed ratios as shown in Fig. 16. The maximum Cp had obtained of R1, R2 and R3 of 0.36, 0.37 and 0.455 at tip speed ratios of 4, 4 and 5.5 respectively

![Graph showing variation in power coefficient with tip speed ratio](image)

Figure 16 Power coefficient versus tip speed ratio at Re=100,000 for different rotors
BLADE PITCH ANGLE AND ROTOR CONFIGURATIONS

The 3 wind turbine models were tested with the help of wind tunnel and blade pitch angles between 0° and 90° with increments of 15°. The rotational speeds were zero at the blade pitch angles of 0° and 90°. The rotors specifications are provided in Tab. 2. Fig. 17(a-c), illustrates that experimentations results of rotor testing at optimization blade pitch angle of 15°, 30° and 45° for 3-bladed of single and multistage rotors. Figure 17, displays the variation of output power with different wind velocity at optimum blade pitch angles. The W1, W2 and W3 models were investigated and blade pitch angle of each rotor was optimized.

![Graphs](image)

(a) (b) (c)

Figure 17 Power output of the different rotors at different wind speed and blade pitch angle
The proposed airfoil NAF4923 and W3 rotor was most suitable as compared with W1 and W2 rotor. Rapid prototyping has considerable potential in manufacturing small blades because it does not require expensive molds and can produce blades for specific requirements. The starting wind velocity was 2 m/s of W1 rotors however the W2 and W3 model had cut-in wind speed approximately 2.5 m/s. The optimization blade pitch angle of wind turbine rotor W1, W2 and W3 were at 30°, 45° and 30° respectively. The difference in mechanical power generated is affected by the axial displacement of the two rotors. The axial displacement of the two rotors affects the value of the wind speed that will hit the second rotor. In this research work, the axial displacement ratios between two rotors were selected as 0.08 m for W3 model. The optimization blade pitch angle for front (R₉) and rear (R₈) rotor were 30° & 45° respectively. The results graph shows that maximum power produced by multistage wind turbine model (W3), at blade pitch angle of 30°. In W3 wind turbine model, the front and rear rotor radius were 0.2 m and 0.4 m respectively. The rotor W1 produces mechanical power = 2.1 W, 5.8 W and 11 W at blade pitch angle of 15°, 30° and 45° with rated wind speed = 8 m/s respectively. Moreover the rotor W2 produces mechanical power = 5.1 W, 13.8 W and 62 W, similarly, rotor W3 produces mechanical power = 3.6 W, 62 W and 28 W at blade pitch angle of 15°, 30° and 45° with rated wind speed = 8 m/s respectively.

CONCLUSION

In this research work, the designed and creations of six new airfoil (NAF-Series) with tested in XFOil at low Reynolds number. The numerical and experimental results indicated that NAF4923 was the most appropriate airfoil to obtain the maximum power coefficient as compared to the SG6043 airfoil. Six new airfoil were measured to analyze and compare Cₐ, Cₐ/Cₐ, with SG6043 and NACA4415 airfoil. The NAF-Series airfoil and blade geometry optimization are suitable for the design and development of small horizontal axis wind turbine.
rotors at low wind speed applications. Airfoils NAF3929, NAF4420, NAF4423, NAF4923, NAF4924, NAF5024, SG6043 and NACA4415 had maximum C_L of 1.35, 1.6, 1.5, 1.55, 1.5, 1.5, 1.65 and 1.48 respectively at angle of attack, α of 12°–16° at $Re = 100,000$. Airfoils NAF3929, NAF 4420, NAF4423, NAF4923, NAF4924, NAF5024, SG6043 and NACA4415 had maximum C_L/C_D of 49, 66, 66.5, 68, 69, 66 and 48 at $\alpha = 8^{\circ}$, 5°, 6°, 5°, 6°, 7° and 10° respectively at $Re= 100,000$. The blade geometries of the NAF4923 and SG6043 were optimized based on BEMT with Matlab and Xfoil. The rotor solidity equal to 11.81 %, 14.63 % and 5.23 % of variable chord and twisted blade geometry were optimized and investigated with Xfoil. The maximum C_p had obtained of blade model R1, R2 and R3 of 0.36, 0.37 and 0.455 at tip speed ratios, λ of 4, 4 and 5.5 respectively. Three rotors were manufactured using NAF4923 airfoil section using the FDM method with low cost and less time. The three wind turbine model (W1, W2 and W3) were tested at different wind speeds, axial displacement and blade pitch angles. From C_p-λ performance, W3 with axial distance between two rotors was 0.08 m is capable of producing better performance as compared to rotor W1 and W2 at the rated wind speed of 8 m/s. The maximum multistage wind turbine (W3) performances at axial displacement of 0.08m. The NAF-Series airfoil is likely to be adopted for single and multistage horizontal axis wind turbine at low Reynolds number. The maximum power produces by the rotor with solidity of 5.23 % at tip speed ratio of 5.5. The optimum blade pitch angle = 30°, 45° and 30° for W1, W2 and W3 rotor respectively. The maximum mechanical power achieved by W3 rotor. It can be said that W3 type of multi stage wind turbine can be utilizing for electricity generations.

CONFLICT OF INTEREST

The author declares no conflict of interest.
ACKNOWLEDGMENTS

The authors thank Dr. D. Y. Patil School of Engineering for their support and providing the wind tunnel and FDM machines.

REFERENCES

Jayapriya, J., Muruganandam, D., Raguraman, D., Senthilkumar, B., and Dhinakaran,

Appendix

A1: MATLAB Code for Blade design and optimization

%lambda=tip speed ratio
lambda=input('enter the value of Tip speed ratio:
');
%R=blade length
Rtip=input('enter blade radius:
');
%B=no. of blades
B=input('enter number of blades:
');
%?=pitch angle
pitch =input('enter pitch angle:
');
pi=3.143;
Rhub=0.2*Rtip;
r=0.2;
ac=0.2;
% Initializing variable for incrementing radius
num=10; % number of blade elements
dr=(Rtip-Rhub)/num; % Width of each blade element
r=Rtip;
x=r/Rtip;
lambdar=x*lambda;
while (r>=Rhub) % loop for incrementing blade element
 % Initializing values of a and adash
 old_a=0.01;
 old_adash=0.01;
 new_a=0.1;
 new_adash=0.1;
 adiff =abs(old_a-new_a);
 bdiff=abs(old_adash-new_adash);
 maxitr=0;
 itrlimit=1;
 while adiff > (0.0001*itrlimit); % Second loop for calculating a and adash
 % Calculation of phi and alpha
 phi=atan(2/(3*lambdar));
 if phi<0
 phi=1.4;
 end
 alpha =6;
 %Cl=lift coefficient
 Cl=((-6*10^-5)*alpha^4)-(0.002*alpha^3)+(0.023*alpha^2)+(0.028*alpha)+0.44;
 %Cd=drag coefficient
 Cd=(-1*10^-5)*alpha^4)+(0.0005*alpha^3)-(0.007*alpha^2)+(0.033*alpha)+0.029;
 Cn=Cl*cos(phi)+Cd*sin(phi);
 Ct=Cl*sin(phi)-Cd*cos(phi);
 end
 % Defining initial blade geometry
 %c=Initial chord length
 chord=((8*pi*r)/(B*Cl))*(1-cos(phi));
 % blade twist
 twist=(phi*(180/pi))-alpha-pitch;
 % Defining blade lift and drag coefficients
%sigma=solidity
sigma=(B*chord)/(2*pi*r);
%f=tip loss
f1=(2/pi)*acos(exp(-(B/2)*(1-(r/Rtip))/((r/Rtip)*sin(phi))));
%f=f1*pi/180;
% Glauer's correction for thrust factor and calculation of new a and adash
if old_a>ac
 K=(4*f1*(sin(phi))^2)/((B*chord)/(2*pi*r)*Cn);
y=(K*(1-(2*ac)));
 if K<0
 break
 elseif y<0
 break
 end
 new_a= (1/2)*((2+y) -((y+2)^2+4*(K*ac^2-1))^0.5); % ct=(sigma*(1-old_a)^2*(Cl*cos(phi)+Cd*sin(phi)))/((sin(phi))^2);
else
 new_a= 1/(1+(4*f1*(sin(phi))^2)/(sigma*Cn*cos(phi)));
 % new_a=(0.143+sqrt(0.0203-(0.6427*(0.889-ct))))/f;
end
new_adash=1/((4*f1*cos(phi)/(sigma*Ct)-1)); % Calculating new values of adiff and bdiff
adiff=abs(new_a-old_a);
bdiff=abs(new_adash-old_adash);
old_a=(new_a+old_a)/2;
old_adash=(new_adash+old_adash)/2;
maxitr=maxitr+1;
 if maxitr>10 & & maxitr<165
 itrlimit=maxitr;
 elseif maxitr>150
 break
 end
% c1=chord length
chord1=((8*pi*r)/(B*Cl))*(1-cos(phi));
if chord1<0;
 chord1=0.0000001;
end
%theta=angle of twist
theta=(phi*(180/pi)-alpha)-pitch;
%sigma1=solidity
sigma1=(B*chord1)/(2*pi*r);
%Print final values of a, adash, chord and theta at a given blade element
fprintf('the value at blade station num%f, chord%f,new_a%f,new_adash%f,theta1%f',num,chord,new_a,new_adash,theta);
fprintf('the value at blade station x= %f,chord1=%f,a=%f,adash=%f,theta=%f,adiff=%f\n',x,chord1,new_a,new_adash,theta,adiff);
r=r-dr;
lambdar=(r/Rtip)*lambda;
\[x = \frac{r}{R_{\text{tip}}}; \]
end