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ABSTRACT
Counting-based secret sharing is presented recently as a promising approach serving multiuser authentication 

applications. The scheme originally generates its shares via simple flipping of one or two 0-bits within the entire 
secret key at various locations. Reconstructing the secret key combines chosen shares, based on (n,k) threshold, 
in parallel specific counting to recover back the secret key. This paper proposes modifying the shares generation 
process, for security enhancement, by dividing the secret key into blocks. Each block involves flipping specific bits 
simultaneously, generating ambiguous shares improving the access system security. The proposed blocks flipping 
shares methods are implemented in different 64-bits models via fair testing Java platform. Experimentations showed 
interesting comparisons results providing remarkable secure contributions. The work can be considered an opening 
applicability direction for further attractive research in improving the counting-based secret sharing technique.

Keywords: Counting-based secret sharing; Shares generation; Shares construction; Key management; Key 
distribution; Information security.

INTRODUCTION
Nowadays, the demand for information security has increased. Its objective did not change, to maintain 

confidentiality, integrity, and availability, but with more new usages. The security of data within organizations 
against threats is becoming more important than before (Gutub et al., 2017). Consequently, information security 
techniques have appeared protecting data from unethical disclosure via cryptography or steganography (Alassaf et 
al., 2018). However, in these techniques (cryptography and steganography (Alsaidi et al., 2018)) there is normally 
a single person controlling access and in charge of security of the data within the system (Alaseri et al., 2018). 
The problem arises if the encryption key for the encrypted or hidden data is lost. This indicates that there is only 
security, but without reliability (AlQurashi et al., 2018). In fact, losing or misusing the encryption key leads to loss 
of data or its benefit, making access to secured data almost impossible (Al-Juaid et al., 2018). Therefore, keeping 
the encryption key with one person is not dependable especially when the system is exposed to any physical or 
electronic problem. So, this key management centralized access process is addressed by distributing copies of the 
encryption key to more than one person allowing sharing the control power. The intention leads to increasing the 
reliability and multiple access to the system, but may reduce confidentiality, perhaps making the security status 
worst where data may be exposed to great risk to be lost, modified, destroyed, or leaked to wrong hands (Binu 
et al., 2016). Accordingly, the secret sharing scheme came into picture considering solving these problems. A 
lot of researches have proposed ideas about sharing a secret among a set of participants, where successful secret 
sharing became possible, i.e., allowing to achieve high levels of confidentiality and reliability. This research of 
secret sharing is making the secret key collectively controlled by a set of participants (Shamir, 2006), avoiding the 
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dominance of a specific authority and the individual trusty. The main philosophy of this secret sharing depends 
on keeping the secret key from hands of solo one person to control the secrecy of information (Binu et al., 2016). 
In addition, the secret sharing allows collective prioritization access as well as partial user’s access to the secret 
information, leading to the joint decision benefiting from distributing trust among many participants. In fact, secret 
sharing is believed to enhance the confidentiality and reliability of the process to access sensitive applications 
and resources (AlQurashi et al., 2018). It forces the requirement access to be multiparty agreed upon needed by 
the sensitive information and resources linked to big impact on decision making, such as voting systems, nuclear 
missile launch control, opening the vault in central banks, medical agreement, and sensitive encryption keys (Gutub 
et al., 2017).

The secret sharing scheme divides a secret among a group of participants, where a specific group can recover 
the secret. Therefore, this secret sharing technique involves two stages: shares construction and distribution stage, 
and secret reconstruction stage. In the stage of shares construction and distribution, the system controller or dealer, 
assumed to be fully trusted, constructs the shares from the secret key by making some of its data-bits changed, i.e., 
as shares. Then, the shares are to be distributed among the intended group of the participants, as in Fig. 1, via secure 
channel or key management system (Al-Juaid et al., 2018). The reconstruction stage allows the qualified subgroup of 
contributors to cooperate and restructure the secret key by gathering the shares in particular (Iftene, 2006).

Considering Fig.1, the secret sharing organization distributes the shares among (n) participants. However, the 
system does not allow all participants to need to restructure the secret key (Kaya, 2009) by keeping approved set (k) 
as a subgroup of (n) contributors (k out of n) to be sufficient. Note that (k) indicates to be less than or equal to (n) 
participants (k ≤ n). Thus, the secret sharing system will be gathering their shares by specific way to retrieve the secret 
key, which is based on a threshold of the secret sharing scheme (Iftene, 2006).

In the threshold secret sharing system, the secret key must be very secure, where attackers cannot guess the secret 
key, even when knowing the shares (AlQurashi et al., 2018). In general, the secret sharing schemes normally require 
two main properties to be accepted, namely, confidentiality and recoverability, as defined below.

 -  Confidentiality: is that shares do not contain any information about the secret hidden key, i.e., not allowing any 
hacker effort to make progress finding secret key by predicting from less than k shares.

 -  Recoverability: the ability of the authorized set of contributors to recover the secret key by gathering intended 
shares.

Figure 1. The notion of Threshold Secret Sharing Outline.
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In this research, we will present refining the security of the Counting Based Secret Sharing Scheme (CBSSS) innovated 
recently by Adnan Gutub (2017). The motivation came from studying CBSSS extensive variety of applicability to almost 
all secret sharing uses, as well as its straightforwardness in its implementation and utilization. This CBSSS works first 
on generating shares by two original methods, namely, 1-bit & 2-bits methods. Then, the grouping of the shares can be 
applied via matching counting within selected shares (k shares) to recover the secret key. 

This paper proposed improving the security of counting-based secret sharing scheme CBSSS by raising the size 
of the secret key to 64-bits as recommended minimum required secure key-size for most applications (Al-Ghamdi 
et al., 2018). In addition, we proposed a new method for generating shares in CBSSS based on blocks method. The 
secret key is divided into blocks of M-bits in size, where every block is altered through the original sharing generation 
techniques, i.e., 1-bit & 2-bit methods, to generate the new shares. This block secret key modification to generate 
shares is showing variation in improving the security of shares, but limiting the total number of shares generated per 
secret key as will be detailed in the study.

The paper has been organized as follows. Section 2 covers the related work about secret sharing systems. 
Section 3 presents specific background needed from the original counting-based secret sharing scheme. Section 4 
presents our proposed modeling enhancement for shares security improvement within CBSSS. Section 5 discusses 
the comparisons of security study for the different models changing the block sizes analyzing the results. Section 
6 presents comparisons with other related works connected to CBSSS. The final section, Section 7, includes the 
conclusion and some recommendations for future research continuing this study.

RELATED WORK
The threshold secret sharing scheme is originally proposed by Shamir (2006) and Blakley (1979), independently in 

the same year. Since then, a lot of research work has been proposed about different threshold secret sharing schemes, 
where many research works in the literature discussed threshold secret sharing from several aspects. Some focused 
on the techniques used, the number of shared secrets, share weight, the changeability of shares, and the rights given 
to users. 

Lately, Bai et al. (2009) enhanced Shamir’s single-secret sharing pattern to multiple-secret sharing structure using 
matrix projection. They suggested an active secret sharing model that renews (n) secret shares occasionally in a (k, n) 
threshold-based secret sharing scheme, deprived of changing the secret, or rebuilding the secret to creating new shares.  
The work of Bai et al. (2009) offered a scattered practical secret sharing model for the matrix projection secret sharing 
technique.  Note that their organization cannot expose the secrets from (k) shares by challengers when new shares 
are updated, which has been mixed with previous and current shares, i.e., making this method threatened against the 
unreceptive attacks.

Beimel et al. (2005) considered weighted threshold secret sharing. They presented that weighted threshold contact 
assembly is possible if and only if it is a ranked threshold entree organization, or a triple access structure, or a structure 
of two ideal weighted threshold access structures, which are determined on smaller sets of users. Through all those 
cases, the weighted threshold access structure may be achieved by a linear ideal secret sharing scheme. Morillo et 
al. (1999) dealt with weighted threshold schemes, through the property of information rate. The access structures 
of weighted threshold schemes presented complete characterization of all the minimal authorized subsets that have 
involved at most two elements. Lower bounds for the optimal information rate of these access structures are given and 
can be further referred to as clarified in Morillo et al. (1999).

In multilevel organizations, there is the demand to share a secret among all the users of the organization in 
hierarchically structured groups (Castiglione et al., 2014). Sharing of data is constructed on a prearranged categorization 
of threshold requests. Such thresholds necessitate the existence of a participant with upper level to develop the 
organization’s secret, as in Tamir-Tassa’s Hierarchical Secret Sharing (Tassa, 2007). Tamir-Tassa’s discussed the 
secret sharing model to adopted polynomial derivatives to produce few shares for contributors of subordinate levels, 
as the unrestricted coefficient of some polynomial.
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In Mignotte’s threshold secret sharing scheme (Mignotte, 1982), the research relied on modulo arithmetic and 
Chinese Remainder Theorem (CRT) making it more complex for applicability as well as giving small shares. The 
scheme has been improved by familiarizing Mingotte sequences as comprehensive, assuming elements are unessentially 
pairwise coprime values as elaborated in (Sorin et al., 2007).

Taghrid Al-Khodaidi et al. ( 2019) presented a scalable shares generation scheme to increase participants using the 
counting-based secret sharing technique. The work of Al-Khodaidi et al. (2019) suggested seven models (Add at first, 
Add at middle, Add at the end, 1R1Z, 2R2Z, 1R1Z1R2Z, and 1R2Z2R1Z) to produce different versions of secret keys 
SK that allows the system to choose after comparison. All seven secret keys SK models are compared in parallel while 
the system is running to select the best based on measuring security degree, i.e., to find the best security of the secret 
key to use in generating all possible shares.

Similarly, Maimoona Al-Ghamdi et al. (2018) presented a security enhancement method serving counting-based 
secret sharing. She improved the shares generation process for multimedia usages affecting the original Gutub’ 
scheme (Gutub et al., 2017) by controlling different disadvantages in the effectiveness relating the measurement 
and construction of the secret key as well as the number of generated shares. The research suggested four models for 
the secret key generation with different sizes. They further proposed adjusting any key size to ensure reaching the 
appropriate unified length adopted in the secret key security study. Their research can be summarized presenting two 
adjusted models for shares generation further to the basic generation method. The work focused on considering the 
avoidable cases within Gutub (2017) work observing the number of zero-bits less than one-bit, i.e., within the secret 
key, making the algorithm generate the shares via novel shares generation methods opposite to the known original 
work. Both related counting-based secret sharing works of Taghrid Al-Khodaidi (2019) as well as Maimoona Al-
Ghamdi (2018) will be considered for comparisons to others, as presented later in Section 6. 

BACKGROUND OF COUNTING-BASED SECRET SHARING
The counting-based secret sharing scheme (CBSSS) mainly builds its shares generation by using two methods, 

namely, 1-bit & 2-bits methods, which both work in different styles to generate all the conceivable shares of the 
secret key SK denoted by ‘A’ shares (Gutub et al., 2017). These ‘A’ shares contain similar length of bits making up 
the secret key. 

In fact, the shares are basically SK but with change in one or two 0-bits within the entire sequence of SK. The scheme 
chooses (n) shares accurately from ‘A’ shares (i.e., n out of A shares), which must be useful and able, when combined, 
to recover SK, assuming the remaining shares are ignored. These (n) shares are distributed among participants by 
authentic channel or trusted dealer (Fig. 1). Nonetheless, in case one or more of (n) shares are absent or unavailable, 
SK cannot be retrieved. Therefore, it requires providing a subset of (n) shares denoted by (k) shares  where  (k≤ n) is 
able to recover SK, as observed in the diagram in Fig. 2. The CBSSS can be categorized as (n, k) threshold scheme. 
It is to be mentioned that the security of any system depends on the difficulty of recovering SK from shares less than 
(k) (Gutub et al., 2017). 

This section will present the original two methods 1-bit & 2-bit to generate shares, which produce the pool of 
shares ‘A’ consisting of acceptable and unacceptable shares and then present the mechanism to recover the secret key 
SK from the shares, which will be briefed while clarifying the counting-based secret sharing approach.

Shares Generation via 1-Bit Method
All original shares generated via the 1-bit method depend mainly on one 0-bits within SK entire sequence. This 

method selects one 0-bits from every specific location of secret key SK for flipping to 1-bit to produce a valid share. 
Every flipping within SK different location is generating a new share; i.e., it must be selecting various positions in 
chain SK not previously selected for producing another share and so forth (Gutub et al., 2017).

The example in Table 1 clarifies the 1-bit method to generate shares, where the size of SK is 8-bits and SK= 
[10100001], which is represented in Hexadecimal as SK= (85) hex.  Note that, in this example, SK has five zero-bits. 
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Therefore, it can generate only five shares by changing one 0-bits to 1-bit, as in the highlighted bits in Table 1. It is 
noted that, in this 1-bit method, all shares are useful for performing the parallel counting to recover the secret key, but 
it gives the limited number of shares making us consider the 2-bits method described next.

Figure 2. The notion of Counting-Based Secret Sharing Scheme CBSSS [1].

Table 1. Example of the 1-bit method shares generation.

85 Hex10000101SK

8710000111Sh1

8D10001101Sh2

D510010101Sh3

A510100101Sh4

C511000101Sh5
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Shares Generation via 2-Bits Method
The 2-bits method enhances the 1-bit method to increase the number of shares in CBSSS, which can be used alone 

or as an extension with the 1-bit method. This method is based on two 0-bits within SK entire sequence to generate 
extra possible shares. It works by scanning SK sequence looking for zeros; when it finds two 0-bits not previously 
used together, they are flipped to 1-bits to produce a new share. In fact, not all generated shares by this method are 
useful, i.e., when applying the counting in parallel to recover the secret key SK. Thus, these shares need to be tested 
for applicability before distributing to participants. The number of expected shares possibly generated by this 2-bits 
method can be estimated by the formula:   Ash, where (Ash)  is the pool ‘A’ generated shares, while ( ) is the number of 
zeros within SK sequence. 

The following example (extended from Table-1) elaborates the 1-bit method, as shown in Table 2. The 2-bits 
method generates more shares than before, as in the highlighted bits in Table 2. Note that, in this example, the number 
of expected generated shares from SK=[10100001] is 10 shares.

Table 2. Example of the 2-bits method shares construction.

85 Hex10000101SK

8F10001111Sh1

9710010111Sh2

A710100111Sh3

C711000111Sh4

9D10011101Sh5

AD10101101Sh6

CD11001101Sh7

B510110101Sh8

D511010101Sh9

E511100101Sh10

Secret Key Reconstruction
The interesting feature of CBSSS is that it does not need to use all ‘A’ shares to recover SK; as mentioned before, 

only selected (n) shares are validated to be used as the authorized set from participants. When there is a need to 
recover the secret key SK, the application determines a value (k)   (k out of n) to be used as the threshold of available 
true users shares for SK reconstruction (Gutub et al., 2017). Therefore, the (k) shares are gathered in parallel within 
the system, and the parallel bits are calculated. If the counting output from all bits in one column equals the value 
of (k) or more, then the resulting bit is one; otherwise, the resulting bit is zero, and so on. These resulting bits 
are combined to reconstruct the secret key, i.e., compared with original SK to check the validity of the shares as 
approved SK secret key.

The following example, in Fig. 3, illustrates the secret key reconstruction mechanism from shares in CBSSS, SK 
= [10100001]. The shares have been generated by 1-bit & 2-bits methods from SK, existing in Table 1, and Table 2. 
Assume the number of selected shares to be given to users is n=10 and threshold K=5. The SK is reconstructed using 
shares Sh1, Sh2, Sh6, Sh7, and Sh10, providing counting result of 53511215 giving the correct SK, as shown in Fig. 3.
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Figure 3. Example of the secret key reconstruction mechanism.

PROPOSED SECURE SHARES GENERATION FOR CBSSS
This research proposes to advance the security of the original counting-based secret sharing scheme CBSSS 

presented in Gutub et al. (2017) via improving its shares generation techniques. The new CBSSS works in the same 
way as the previous scheme but with some adjustments. We suggested a new approach of block segmentation when 
applying the 1-bit and 2-bits methods used to generate the shares from the secret key SK. This scheme can be clarified 
applying the same two stages, generating shares from the secret key and retrieving secret key from specific shares. In 
the first stage, the new CBSSS works on generating all the possible shares from secret key SK via the use of improved 
approach to implement the 1-bit and 2-bits methods within M-blocks. These shares are to be generated from SK with 
the same size of blocks to ensure appropriate security and reduce the probability of easily guessing SK from shares. 
Interestingly, the second stage of SK retrieval used the same counting process as the same old CBSSS technique in 
(Gutub et al., 2017), i.e., after providing the sufficient number of specific shares. The modified proposed CBSSS added 
the block division process before applying the semioriginal shares generation scheme as illustrated in the algorithm 
flow graph of Fig. 4. Note that the source of the SK is assumed to be generated randomly through the random number 
generator RNG pretended available, trusted within the system.

In this CBSSS, Fig. 4, the system dealer (Algorithm) generates SK secret key with size 64-bit by using Random 
Number Generator (RNG) in binary format, for the aim of producing a trusted secret key SK. The secret key SK should 
be unknown to all participants. This justifies that SK sequence must be random allowing the difficulty of predicting it 
by participants or intruders. Therefore, generating the secret key by RNG needs to be verified to be realistic (trusted) 
before generating shares. In the proposed work, we consider the reliable secret key generation for counting-based 
secret sharing as clarified in (AlQurashi et al., 2018), which applied two statistical test standards to be checked. The 
reliability is derived from frequency (Monobit) test and the frequency block test as standard experimentations from 
NIST 800-22 suites (Rukhin et al., 2001), i.e., to test the randomness of SK getting the reliable random secret key 
applicable for CBSSS (AlQurashi et al. 2018).
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Figure 4. Proposed modified counting-based secret sharing scheme.

In this proposal of new block shares generation method, we simulated the improved algorithm by means of Intel 
Core i7 processor PC running via 2.90 GHz frequency, on memory of RAM 16 GB, with 64-bit operating system. 
The platform used is NetBeans IDE version 8.9 as research programming environment for simulating purposes. 
The research database used is MySQL Workbench version 6.3 as available memory to store results and make them 
connected to NetBeans IDE. Mining the outputs has been achieved by reading the database MySQL Workbench 
followed by transferring its lists to Excel program for detailed investigation and assessment. It is to be mentioned that 
CBSSS Java platform and software programs are geared for testing experimentations and to provide fair comparison 
study between the models. The software platform is not optimized to the adoption of real-life utilization or commercial 
usages.

Shares Generation via Secret Key as M-Blocks
In the first CBSSS model, every share is considered to be developed from the secret key SK but with changing 

one or two 0-bits as previously presented in 1-bit or 2-bits methods (Gutub et al., 2017). This straightforward CBSSS 
shares generation process relies on 0-bits within SK to generate shares. We increased the size of the secret key 
proposed in our new scheme as 64-bits, to pretend that the minimum recommended key-size in real-life applications is 
password numbers (AlQurashi et al., 2018).  Accordingly, we proposed this new approach to improve the old method 
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in generating shares through dividing the size of the secret key to M equal blocks based on security options required 
within the applications and usages, i.e., assuming M is the number of blocks. Then we apply the 1-bit and 2-bits 
methods within each block simultaneously to generate the shares, as shown in Fig. 5. The goal of applying this new 
approach is to increase the shares ambiguity within the system to be securely unable to relate between the shares and 
secret key. In fact, it is noted clearly that the similarity existence among shares can be also used by intruders making 
the probability to guess SK from shares originally possible. Therefore, we suggested these new options of M-blocks 
applying the 1-bit and 2-bits methods to generate the list ‘A’ shares from SK after dividing SK sequence into equal 
M-blocks, namely, 2-blocks, 4-blocks, and 8-blocks, as testing models in this study. The simulation will start with 
1-block testing, which is the basic original 1-bit method used in the previous scheme (Gutub et al., 2017). Then, we 
will test dividing the secret in several equal blocks, as shown in Fig. 5. Through these methods, we assume three 
options for a permitted number of the block to implement the 1-bit and 2-bits methods, which give disparate levels 
of security and varying capacities of A shares to be available in the applications of CBSSS. The study is based on the 
number of shares expected to be generated from SK in the 1-bit method within M-block depending on the number 
of zeros (nz) within SK divided on the number of blocks M ( Ash = nz /M ), while the number of shares expected to 
be generated from SK in the 2-bit method within M-block depends on the previously noted summation formula:  Ash, 
where   a= nz /M.

Figure 5. Proposed new method for shares generating based on M-blocks.

Shares Generated from SK as 1-Block
This method is similar in principle to the basic 1-bit and 2-bits method of the CBSSS (Gutub et al., 2017), but with 

the secret key size improved to 64-bit, as to be used for comparison completion to the newly proposed work. The 1-bit 
technique will select one 0-bit from a precise location of SK arrangement and then reverse it to 1-bit to yield a valid 
share. The 2-bits method works by flipping two 0-bits within SK sequence to produce valid shares. Note that, every 
time in generating the new shares, we must be selecting the various position in SK 64-bit not previously selected, 
i.e., for producing other shares and so forth. Recall that not all generated shares by the 2-bit method are useful for 
applying the counting-based parallel secret recovering strategy, unlike the fully approved 1-bit method, to reconstruct 
the secret key (Gutub et al., 2017). Thus, these 2-bit method shares need to be tested before distributed to participants. 
The number of expected shares is estimated by the summation formula:  Ash + nz. 
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The following example, as in Table 3, clarifies the 1-bit and 2-bits methods within the 1-block entire SK sequence, 
i.e., to generate all possible shares. Consider SK as follows.

SK= [10110010 00110101 01101101 00110001 00110110 00110011 01100110 01110010] 

Table 3. Example listing samples of shares generated assuming SK as 1-block.

Binary Hex

SK 10110010 00110101 01101101 00110001 00110110 00110011 01100110 01110010 B2 35 6D 31 36 33 66 72

Method A Block 1 B2 35 6D 31 36 33 66 72

1-Bit

Sh1 1011 010 00110101 01101101 00110001 00110110 00110011 01100110 01110010 BA 35 6D 31 36 33 66 72 

Sh2 10110010 0110101 01101101 00110001 00110110 00110011 01100110 01110010 B2 B5 6D 31 36 33 66 72

Sh3 10110010 00110101 1101101 00110001 00110110 00110011 01100110 01110010 B2 35 ED 31 36 33 66 72 

Sh4 10110010 00110101 011011 1 00110001 00110110 00110011 01100110 01110010 B2 35 6F 31 36 33 66 72

Sh5 10110010 00110101 01101101 0011 001 00110110 00110011 01100110 01110010 B2 35 6D 39 36 33 66 72

Sh6 10110010 00110101 01101101 00110001 0011011  00110011 01100110 01110010 B2 35 6D 31 37 33 66 72

Sh7 10110010 00110101 01101101 00110001 00110110 0110011 01100110 01110010 b2 35 6d 31 36 b3 66 72 

Sh8 10110010 00110101 01101101 00110001 00110110 0 110011 01100110 01110010 B2 35 6D 31 36 73 66 72 

Sh9 10110010 00110101 01101101 00110001 00110110 00110011 1100110 01110010 B2 35 6D 31 36 33 E6 72

Sh10 10110010 00110101 01101101 00110001 00110110 00110011 0110011  01110010 B2 35 6D 31 36 33 67 72

Sh11 10110010 00110101 01101101 00110001 00110110 00110011 01100110 0111 010 B2 35 6D 31 36 33 66 7A 

Sh12 10110010 00110101 01101101 00110001 00110110 00110011 01100110 0111001 B2 35 6D 31 36 33 66 73

2-Bit

Sh13 1 11001  00110101 01101101 00110001 00110110 00110011 01100110 01110010 F3 35 6D 31 36 33 66 72 

Sh14 1011 010 0110101 01101101 00110001 00110110 00110011 01100110 01110010 BA B5 6D 31 36 33 66 72 

Sh15 10110 10 001101 1 01101101 00110001 00110110 00110011 01100110 01110010 B6 37 6D 31 36 33 66 72 

Sh16 10110 10 00110101 1101101 00110001 00110110 00110011 01100110 01110010 B6 35 ED 31 36 33 66 72 

Sh17 10110010 0110101 01101101 0110001 00110110 00110011 01100110 01110010 B2 B5 6D B1 36 33 66 72 

Sh18 10110010 00110101 1101101 00110 01 00110110 00110011 01100110 01110010 B2 35 ED 35 36 33 66 72

Sh19 10110010 00110101 01101101 00110001 0 110110 00110011 0110011  01110010 B2 35 6D 31 76 33 67 72 

Sh20 10110010 00110101 01101101 00110001 0011 110 00110011 01100110 01110 10 B2 35 6D 31 3E 33 66 76 

This SK can be rephrased in Hexadecimal as SK= (B2  35  6D  31  36  33  66  72), to show the difference with the 
shares in a comparable manner. This example shows SK having 32 zero bits. Thus, the number of expected shares is 
estimated to be 528 shares. This number of shares is interestingly big and very useful to be studied. Table 3 mentions 
the sample of shares here to clarify the concept.
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This method gives a good capacity in the number of generated shares. However, it has a vital drawback in all 
generated shares to be very similar. This is making the probability of guessing SK from shares very high, as can be 
seen comparing two shares together to guess other shares. The reason behind this security flow is that we changed 
only one or two 0-bits within the entire 1-block SK sequence for every share, as observed in Table 3. This similarity 
is completely undesirable in the secret sharing leading to the lowest level of security. The 1-block method is believed 
to be working against the intended confidentiality property, which requires that there is no information leading to the 
secret key SK in any part or stage of the secret sharing scheme.

Shares Generated from SK as 2-Blocks
The 1-bit and 2-bits methods are applied on dividing the secret key SK into 2-blocks, i.e., to two equal blocks, 

where each block contains 32-bits. The 1-bit and 2-bit methods are applied to every block to generate all possible 
shares. In the 1-bit method, one 0-bit is flipped every 32-bit sequence found in SK block to construct new shares. 
Similarly, the 2-bit method begins after the 1-bit method to be generating more possible shares. Note that, every time, 
a different position is to be chosen for zero flipping in each block, in order for the changes to produce new shares from 
both methods.

The example in Table 4 clarifies the two methods (1-bit and 2-bits) within 2-blocks to generate ‘A’ shares from SK. 
Assuming the same SK as in Table 3, 

SK = [10110010 00110101 01101101 00110001 00110110 00110011 01100110 01110010] represented in Hex 
SK= [B2356D3136336672]. The example SK has 32 zero bits possible to generate 16 shares by the 1-bit method, and 
120 shares by the 2-bit method, for the 2-blocks. Table 4 shows a sample of the shares generated within this example 
where the flipped bits have been highlighted.

Table 4. Example listing samples of shares generated assuming SK as 2-blocks.

Binary Hex

SK 10110010 00110101 01101101 00110001 00110110 00110011 01100110 01110010 B2 35 6D 31 36 33  66 72

Method A Block 1 Block 2 B2 35 6D 31 36 33 66 72

1-Bit

Sh1 1 110010001101010110110100110001 0110110001100110110011001110010 F2 35 6D 31 B6 33 66 72

Sh2 1011 010001101010110110100110001 0 110110001100110110011001110010 BA 35 6D 31 76 33 66 72

Sh3 10110010 01101010110110100110001 00110110 01100110110011001110010 B2 B5 6D 31 36 B3 66 72

Sh4 101100100 1101010110110100110001 001101100 1100110110011001110010 B2 75 6D 31 36 73 66 72

Sh5 1011001000110101 110110100110001 0011011000110011 110011001110010 B2 35 ED 31 36 33 E6 72

Sh6 1011001000110101011 110100110001 0011011000110011011 011001110010 B2 35 7D 31 36 33 76 72

Sh7 1011001000110101011011 100110001 00110110001100110110 11001110010 B2 35 6F 31 36 33 6E 72

Sh8 101100100011010101101101 0110001 00110110001100110110011 01110010 B2 35 6D B1 36 33 67 72

Sh9 1011001000110101011011010 110001 001101100011001101100110 1110010 B2 35 6D 71 36 33 66 F2

Sh10 1011001000110101011011010011 001 0011011000110011011001100111 010 B2 35 6D 39 36 33 66 7A

Sh11 10110010001101010110110100110 01 00110110001100110110011001110 10 B2 35 6D 35 36 33 66 76

Sh12 101100100011010101101101001100 1 0011011000110011011001100111001 B2 35 6D 33 36 33 66 73
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  2-Bits

Sh17 1 11 010001101010110110100110001 110110001100110110011001110010 FA 35 6D 31 F6 33 66 72

Sh18 1 110 10001101010110110100110001 011 110001100110110011001110010 F6 35 6D 31 BE 33 66 72

Sh19 1011 10001101010110110100110001 0 11 110001100110110011001110010 BE 35 6D 31 7E 33 66 72

Sh20 1011 01 001101010110110100110001 0 11011 001100110110011001110010 BB 35 6D 31 77 33 66 72

Sh21 10110 1 001101010110110100110001 0011 11 001100110110011001110010 B7 35 6D 31 3F 33 66 72

Sh22 10110 10 01101010110110100110001 0011 110 01100110110011001110010 B6 35 6D 31 3E 33 66 72

Sh24 1011001 0011 1010110110100110001 0011011 0011 0110110011001110010 B3 3D 6D 31 37 3B 66 72

Sh25 10110010 1101010110110100110001 00110110 1100110110011001110010 B2 F5 6D 31 36 F3 66 72

Sh26 10110010 01101 10110110100110001 00110110 0110 110110011001110010 B2 B7 6D 31 36 B7 66 72

Sh27 101100100 11 1010110110100110001 001101100 11 0110110011001110010 B2 7D 6D 31 36 7B 66 72

Sh28 101100100 1101 10110110100110001 001101100 110 110110011001110010 B2 77 6D 31 36 77 66 72

Sh29 101100100011 1 10110110100110001 001101100011 110110011001110010 B2 3F 6D 31 36 3F 66 72

Sh30 101100100011 101 110110100110001 001101100011 011 110011001110010 B2 3D ED 31 36 3B E6 72

Sh33 1011001000110101 11011 100110001 0011011000110011 110 11001110010 B2 35 EF 31 36 33 EE 72

Sh34 1011001000110101011 11 100110001 0011011000110011011 11001110010 B2 35 7F 31 36 33 7E 72

Sh35 1011001000110101011 1101 0110001 0011011000110011011 011 01110010 B2 35 7D B1 36 33 77 72

Sh36 1011001000110101011011 1 0110001 00110110001100110110 11 01110010 B2 35 6F B1 36 33 6F 72

Sh37 1011001000110101011011 10 110001 00110110001100110110 110 1110010 B2 35 6F 71 36 33 6E F2

Sh39 1011001000110101011011010 11 001 001101100011001101100110 111 010 B2 35 6D 79 36 33 66 FA

Sh40 1011001000110101011011010011 0 1 0011011000110011011001100111 01 B2 35 6D 3B 36 33 66 7B

This method gives a good acceptable capacity of generated shares, but not all shares are useful according to the 
parallel counting-based technique to reconstruct SK. Therefore, the shares, especially from the 2-bit method, need to 
be tested before distribution to participants. This 2-blocks method still gives some similarity among generated shares 
as well as among the shares together, which can be unsecure leading to SK in particular. Thus, 2-blocks strategy gave 
some probability of guessing SK from shares that may help guess SK, i.e., when compared to more than two shares 
together, as can be observed in Table 4. This 2-blocks method improved the security compared to the 1-block method, 
but still noted to be low. This security study will be elaborated later in the comparison and analysis section.

Shares Generated from SK as 4-Blocks
To improve the security of the counting based secret sharing system, we tested implementing the shares generation 

from two methods (1-bit and 2-bit) on SK partitioned into 4-blocks. The partitioning is aiming to reduce the similarity 
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between shares and SK although its number of shares is reduced a lot. This 4-blocks model works on dividing SK 
into four equal blocks of 16-bits. Then, the shares generation 1-bit and 2-bit methods are applied to every block to 
construct the new shares.

The example in Table 5 clarifies the 1-bit and 2-bit methods applied within 4-blocks shares generation to construct 
possible shares from SK. Assume the same SK used before represented in Hex as SK= (B2356D3136336672).

Table 5. Example listing samples of shares generated assuming SK as 4-blocks.

                                                                                  Binary                                                                                     Hex

SK 10110010 00110101 01101101 00110001 00110110 00110011 01100110 01110010

Method Ash Block 1 Block 2 Block 3 Block 4 B2 35 6D 31 36 33 66 72

1-Bit 

Sh1 1 110010 00110101 1101101 00110001 0110110 00110011 1100110 01110010 F2 35 ED 31 B6 33 E6 72

Sh2 1011 010 00110101 011 1101 00110001 0 110110 00110011 011 0110 01110010 BA 35 7D31 76 33 76 72

Sh3 10110 10 00110101 011011 1 00110001 0011 110 00110011 0110 110 01110010 B6 35 6F 31 3E 33 6E 72

Sh4 1011001  00110101 01101101 0110001 0011011  00110011 0110011  01110010 B3 35 6D B1 37 33 67 72

Sh5 10110010 0110101 01101101 0 110001 00110110 0110011 01100110 1110010 B2 B5 6D 71 36 B3 66 F2

Sh6 10110010 0 110101 01101101 0011 001 00110110 0 110011 01100110 0111 010 B2 75 6D 39 36 73 66 7A

Sh7 10110010 0011 101 01101101 00110 01 00110110 0011 011 01100110 01110 10 B2 3D 6D 35 36 3B 66 76

Sh8 10110010 001101 1 01101101 001100 1 00110110 00110 11 01100110 0111001 B2 37 6D 33 36 37 66 73

2-Bit 

Sh9 1 11 010 00110101 11 1101 00110001 110110 00110011 11 0110 01110010 FA 35 FD 31 F6 33 F6 72

Sh10 1 110 10 00110101 11011 1 00110001 011 110 00110011 110 110 01110010 F6 35 EF 31 BE 33 EE 72

Sh11 1 11001  00110101 1101101 0110001 011011  00110011 110011  01110010 F3 35 ED B1 B7 33 E7 72

Sh12 1011 10 00110101 011 11 1 00110001 0 11 110 00110011 011 110 01110010 BE 35 7F 31 7E 33 7E 72

Sh13 1011 01  00110101 011 1101 0110001 0 11011  00110011 011 011  01110010 BB 35 7D B1 77 33 77 72

Sh14 10110 1  00110101 011011 1 0110001 0011 11 00110011 0110 11 01110010 B7 35 6F B1 3F 33 6F 72

Sh15 10110 10 0110101 011011 1 0 110001 0011 110 0110011 0110 110 1110010 B6 B5 6F 71 3E B3 6E F2

Sh16 1011001  0110101 01101101 110001 0011011  0110011 0110011  1110010 B3 B5 6D F1 37 B3 67 F2

Sh17 1011001  0 110101 01101101 011 001 0011011  0 110011 0110011  0111 010 B3 75 6D B9 36 73 67 7A

Sh18 10110010 110101 01101101 0 11 001 00110110 110011 01100110 111 010 B2 F5 6D 79 36 F3 66 FA

Sh19 10110010 011 101 01101101 0 110 01 00110110 011 011 01100110 1110 10 B2 BD 6D 75 36 BB 66 F6

Sh20 10110010 0 11 101 01101101 0011 01 00110110 0 11 011 01100110 0111 10 B2 7D 6D 3D 36 7D 66 7E

Sh21 10110010 0 1101 1 01101101 0011 0 1 00110110 0 110 11 01100110 0111 01 B2 77 6D 3B 36 77 66 7B

Sh22 10110010 0011 1 1 01101101 00110 1 00110110 0011 11 01100110 01110 1 B2 3F 6D 37 36 3F 66 77
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This 4-blocks example, Table 5, shows that SK of 32 zero bits can be generating only eight shares by the 1-bit 
method and 28 shares by the 2-bit method. This 4-blocks model provides less number of shares, as low capacity 
number of shares, compared with the previous two methods, while improving the security as an acceptable tradeoff. 
It can be noticed from this 4-blocks model that there is some similarity among shares, which may lead intruders to 
search for SK, as shown in Hex column of Table 5. Therefore, the 4-blocks model can consider the security level as 
a medium, but is improving among the 2-blocks and 1-block models presented earlier. This security and capacity 
comparison is detailed later in the comparison and analysis section.

Shares Generated from SK as 8-Blocks
The last proposed enhancement in this shares generation study is the 8-blocks SK model. In this model, we try 

to reduce the similarity among shares among each other to the best. This experimentation works by dividing SK to 8 
equal blocks, where each block contains 8-bits. The 8-blocks model shares generation applies the same philosophy of 
1-bit and 2-bit methods but to each block separately. In each block, we chose a different position of one 0-bit or two 
0-bits not chosen before, to be flipped for generating a new share.

The following example, shown in Table 6, clarifies this SK 8-blocks model shares generation via the 1-bit and 2-bit 
methods. Assume the same SK used before represented in Hex as SK= (B2356D3136336672). Through this 8-blocks 
example, as in Table 6, the number of shares generated by the 1-bit method and 2-bit method is only four shares and 
six shares, respectively. This model gives high security, but low number of shares compared to all previous methods. 
It is noted that it is very difficult to guess SK from shares, i.e., when some illegal shares are considered together. 
Interestingly, we found the similarity among shares almost nonexistent, as observed in the Hex columns of Table 6. 
This method’s main drawback is the very low capacity in generated shares, as expected from SK to be much lower 
than all the previous models. Therefore, we can consider the security level in this model as high but at the expense of 
capacity, which we will study more later in the comparison and analysis section.

Table 6. Example listing shares generated assuming SK as 8-blocks.

Binary Hex

SK 10110010 00110101 01101101 00110001 00110110 00110011 01100110 01110010 B2 35 6D 31 36 33 66 72

Method A Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 B2 35 6D 31 36 33 66 72

1-Bit

Sh1 1 110010 0110101 1101101 0110001 0110110 0110011 1100110 1110010 F2 B5 ED B1 B6 B3 E6 F2

Sh2 1011 010 0 110101 011 1101 0 110001 0 110110 0 110011 011 0110 0111 010 BA 75 7D 71 76 73 76 7A

Sh3 10110 10 0011 101 011011 1 0011 001 0011 110 0011 011 0110 110 01110 10 B6 3D 6F 39 3E 3B 6E 76

Sh4 1011001 001101 1 01101101 00110 01 0011011 00110 11 0110011 0111001 B3 37 6D 35 37 37 67 73

2-Bit

Sh5 1 11 010 110101 11 1101 110001 110110 110011 11 0110 111 010 FA F5 FD F1 F6 F3 F6 FA

Sh6 1 110 10 011 101 11011 1 011 001 011 110 011 011 110 110 1110 10 F6 BD EF B9 BE BB EE F6

Sh7 1 11001 01101 1 011 11 1 0110 01 011011 0110 11 110011 111001 F3 B7 7F B5 B7 B7 E7 F3

Sh8 1011 10 0 11 101 01101101 01100 1 0 11 110 0 11 011 011 110 0111 10 BE 7D 6D B3 7E 7B 7E 7E

Sh9 1011 01 0 1101 1 01101101 0 11 001 0 11011 0 110 11 011 011 0111 01 BB 77 6D 79 77 77 77 7B

Sh10 10110 1 0011 1 1 01101101 0 110 01 0011 11 0011 11 0110 11 01110 1 B7 3F 6D 75 3F 3F 6F 77



Secure Shares Generation via M-Blocks Partitioning for Counting-Based Secret Sharing106

Secret Key Retrieval from M-Blocks Shares
The secret key retrieval mechanism from specific shares in our new approach follows the same the basic original 

counting-based secret sharing approach (Gutub et al., 2017). All ‘A’ shares generated from SK by the 1-bit and 
2-bit methods within M-blocks are combined based on the threshold in a parallel counting manner. The selected 
‘n’ shares are the number of participants in the secret sharing system. The shares of 1-bit method are all fine. 
However, the shares from the 2-bit method need to be tested to make sure of their validity before distributing to 
the authorized contributors. When the need is to reconstruct the original secret key SK, the application should have 
determined a value of k out of n (n ≥ number of valid shares ≥  k) assumed as the threshold of existing accurate 
shares, considering matching for SK redevelopment. The k shares are entered to the system and considered in 
parallel via the counting-based rules for parallel bits to be calculated. If the counting result out of the assigned bits’ 
grouping for one column comes out as quantity (k) or larger, then the remarking related output location is given bit 
one; otherwise, the bit is remarked zero, and so on. These remarked outcome bits are equated with starting correct 
SK to confirm authentication. This process is not affected by the M-blocks modeling and can be applied as briefed 
earlier in Fig. 3.

Application of 8-Blocks Model Possibilities 
This section will focus on 8-blocks SK model. It will present dissimilar scenarios for operation of shares to 

simplify SK recovery mechanism and potential application trials to be discussed. Assume the same secret key SK 
existing in this paper, SK= (B2 35 6D 31 36 33 66 72). The model used ‘A’ shares generated by the 1-bit and 2-bit 
methods within 8-blocks model as presented in Table 6 before. Assuming the number of selected shares is chosen 
for users with n=8 (Table 7). The specific shares distributed have been tested to be valid and applicable to recover 
SK secret key with threshold k=5.

Table 7. Valid shares selected from 8-blocks model distributed to 8 participants.

nsh Binary share Hex share

Sh1 1111001010110101111011011011000110110110101100111110011011110010 F2 B5 ED B1 B6 B3 E6 F2

Sh2 1011101001110101011111010111000101110110011100110111011001111010 BA 75 7D 71 76 73 76 7A

Sh3 1011011000111101011011110011100100111110001110110110111001110110 B6 3D 6F 39 3E 3B 6E 76

Sh4 1011001100110111011011010011010100110111001101110110011101110011 B3 37 6D 35 37 37 67 73

Sh5 1111101011110101111111011111000111110110111100111111011011111010 FA F5 FD F1 F6 F3 F6 FA

Sh7 1111001110110111011111111011010110110111101101111110011111110011 F3 B7 7F B5 B7 B7 E7 F3

Sh9 1011101101110111011011010111100101110111011101110111011101111011 BB 77 6D 79 77 77 77 7B

Sh10 1011011100111111011011010111010100111111001111110110111101110111 B7 3F 6D 75 3F 3F 6F 77

Case 1:  Situation of Combining Shares = k
In this case, let k=5 be the number of shares. This scenario is well-thought as valid. Thus, the shares are joint to 

reconstruct SK, as in the following example:
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Sh1 : 1111001010110101111011011011000110110110101100111110011011110010 >>  F2 B5 ED B1 B6 B3 E6 F2

Sh3 : 1011011000111101011011110011100100111110001110110110111001110110 >>  B6 3D 6F 39 3E 3B 6E 76

Sh4 : 1011001100110111011011010011010100110111001101110110011101110011 >>  B3 37 6D 35 37 37 67 73

Sh5 : 1111101011110101111111011111000111110110111100111111011011111010 >>  FA F5 FD F1 F6 F3 F6  FA

Sh10 : 1011011100111111011011010111010100111111001111110110111101110111 >>  96 3D 6B 39 3D 3B 7E 76

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

K   : 5255125221552525255155152255120521552552215522552551255225551252 >>    Counting Results

SK = 1011001000110101011011010011000100110110001100110110011001110010 >>   B2 35 6D 31 36 33 66 72

The recovered output of the combination process equals Hex value  B2 35 6D 31 36 33 66 72, which is equal to 
the secret key SK in a proven correct situation.

Case 2:  Situation of Combining Shares > k.
In this case, assume k=5 defining number of shares > k.  This scenario should be measured correctly, although the 

number of shares is greater than k. The shares reconstructed with this situation proved the counting result of bits as to 
be larger than or equal to k, as in the example

Sh1 : 1111001010110101111011011011000110110110101100111110011011110010 >>  F2 B5 ED B1 B6 B3 E6 F2

Sh3 : 1011011000111101011011110011100100111110001110110110111001110110 >>  B6 3D 6F 39 3E 3B 6E 76

Sh4 : 1011001100110111011011010011010100110111001101110110011101110011 >>  B3 37 6D 35 37 37 67 73

Sh5 : 1111101011110101111111011111000111110110111100111111011011111010 >>  FA F5 FD F1 F6 F3 F6  FA

Sh9 : 1011101101110111011011010111100101110111011101110111011101111011 >>  BB 77 6D 79 77 77 77 7B

Sh10 : 1011011100111111011011010111010100111111001111110110111101110111 >>  96 3D 6B 39 3D 3B 7E 76

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

K   : 6266226322662636266166162366220622662663226623662662266326662263 >>    Counting Results

SK = 1011001000110101011011010011000100110110001100110110011001110010 >>   B2 35 6D 31 36 33 66 72

The number of shares is found larger than k. So, as the counting sum outcome of bits in every column ≥ k, the 
counting result implies giving one; otherwise, it implies giving a zero, as placed in the testing SK location. Thus, The 
Hex output of the combination process is B2 35 6D 31 36 33 66 72, which is equal to the secret key SK as proven 
correct.

Case 3:  Situation of Combining Shares < k.
In this case, assume k=5 and number of shares < k; the system should stop accessibility making it unable to retrieve 

SK. The condition of number of shares found to be less than k is shown with only 4 shares, as follows:
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Sh1 : 1111001010110101111011011011000110110110101100111110011011110010 >>  F2 B5 ED B1 B6 B3 E6 F2

Sh3 : 1011011000111101011011110011100100111110001110110110111001110110 >>  B6 3D 6F 39 3E 3B 6E 76

Sh4 : 1011001100110111011011010011010100110111001101110110011101110011 >>  B3 37 6D 35 37 37 67 73

Sh9 : 1011101101110111011011010111100101110111011101110111011101111011 >>  BB 77 6D 79 77 77 77 7B

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

K   : 4144114211441424144044141144210411441442114412441441144214441142 >>    Counting Results

SK = 0000000000000000000000000000000000000000000000000000000000000000 >>  00 00 00 00 00 00 00 00

In this case, the number of shares is less than k. Thus, the outcome of the combination process is 0000000000000000 
≠ SK= B2 35 6D 31 36 33 66 72. Hence, it cannot recover the secret key.

Case 4:  Situation of involving intruder False Share
Assume that a trespasser comes in with a false share in the given example of Case 1, i.e., k=5, and number of shares 

= k, but this single share (or can be more) is false, i.e., injected by hacker, as in the following example:

Sh1 : 1111001010110101111011011011000110110110101100111110011011110010 >>  F2 B5 ED B1 B6 B3 E6 F2

Sh3 : 1011011000111101011011110011100100111110001110110110111001110110 >>  B6 3D 6F 39 3E 3B 6E 76

Sh4 : 1011001100110111011011010011010100110111001101110110011101110011 >>  B3 37 6D 35 37 37 67 73

Sh9 : 1011101101110111011011010111100101110111011101110111011101111011 >>  BB 77 6D 79 77 77 77 7B

FSh: 1001011000111101011010110011100100111101001110110111111001110110 >>  96 3D 6B 39 3D 3B 7E 76

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

  K   : 5145125211552525155054251155310511552543115522551552255215551252 >>    Counting Results

 SK =   1001001000110101011010010011000100110100001100110110011001110010 >>  92 35 69 31 34 33 66 72

This case is considered inacceptable, where all shares are legal but the false one marked as Fsh. Thus, the output 
of the combination process is different such as 92 35 69 31 34 33 66 72 ≠ 

SK= B2 35 6D 31 36 33 66 72, confirming the model security correctness.

Case 5:  Situation of involving intruder several False Shares
Assume a similar case, to Case 4 above, of intruder inserting false shares, but with more than one false share, 

namely, FSh1 and FSh2, as in the following example:
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Sh1 : 1111001010110101111011011011000110110110101100111110011011110010 >>  F2 B5 ED B1 B6 B3 E6 F2

Sh3 : 1011011000111101011011110011100100111110001110110110111001110110 >>  B6 3D 6F 39 3E 3B 6E 76

Sh4 : 1011001100110111011011010011010100110111001101110110011101110011 >>  B3 37 6D 35 37 37 67 73

 FSh1: 1011011000110111010111010101010101010110011101110111010001110100 >>  B6 37 5D 55 56 77 74 74

FSh2: 1001010000111101011010110001100100111101001110110111110001110110 >>  94 3D 6B 19 3D 3B 7C 76

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

  K   : 5145034110552525154154251135220511542542115522551552253115550342 >>    Counting Results

 SK =   1001000000110101010010010001000100100100001100110110010001110000 >>  90 35 49 11 24 33 64 70

The two false shares when combined to the valid shares give invalid counting-based results. Thus, the Hex outcome 
of the combination process is 90 35 49 11 24 33 64 70 ≠ SK, which verifies the scheme security strength.

COMPARISON AND RESULTS ANALYSIS
The proposed new shares generation via M-blocks secret key partitioning for counting-based secret sharing has 

been implemented and compared involving all studied models, namely, 1-block, 2-blocks, 4-blocks, and 8-blocks 
models, considering the 1-block model as the original basic counting-based secret sharing scheme but modified to be 
for 64-bits in size, in order to provide fair research and analysis. The security approximation is gained from considering 
the average similarity rate found between SK secret key aligned with the generated shares. The study is determining 
the level of security for these M-blocks models suggesting the best method based on less similarity among the shares 
and among SK secret key. So, the work depended on the same secret key SK (SK= B2 35 6D 31 36 33 66 72) used 
fairly in all examples to generate the different shares. The security comparison is built on similarity rate (S) for digits 
of any share calculated among all other shares. This S rate is generated by calculating the number of times frequency 
(F) for a digit in the same location found in all shares. Then, the analysis is calculating percentage frequency for each 
share independently using formula:  . 

The average similarity rate (Vsh) among all shares is computed for every M-block model.  Likewise, the similarity 
rate (S) is calculated pairing SK digits with shares digits using the number of frequency (F) per digit in the same 
location, i.e., for shares with the same digit location in SK. For example, the similarity ratio (S) for the share assuming 
model of Ash=1 can be calculated as: , that is used for calculating the average similarity rate (Vsk) between the shares 
as listed in Table 8.

Table 8. Average similarity rate among shares compared to SK.

1-Bit & 2-Bit
Methods A-share

Average of Similarity Rate
Vsh Vsk

Original 1-Block
(Entire Sequence) 528 78.43 % 88.10 

Within 2-Blocks 136 62.13 % 77.34 

Within 4-blocks 36 41.84 % 58.85 

Within 8-Blocks 10 28.75 % 34.38 
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Consider the results (Table 8) of the original 1-block model gained from 1-bit and 2-bit methods calculated 
assuming the SK size of 64-bits. The similarity rate (Vsh) is found to be 78.43% above the average, while the 
average of similarity rate (Vsk) in one share with SK is found higher around 88.10%, as shown in Fig. 6. It is to be 
noted that this 1-block model is providing around five times the number of shares of all the other models as a normal 
tradeoff between security and capacity, which needs to be optimized. This increase in the shares capacity (A-shares) 
is due to the increase of SK size to be 64-bit involving 50% zeros, allowing the numbers of generated shares to be 
528 shares, as shown in Fig. 6. This increase in shares capacity (number of shares) is reflecting the expense of the 
security level. Consequently, this method is not preferred to be used in the counting-based secret sharing scheme 
CBSSS, because of its lowest security, i.e., giving the high rate of similarity between shares and between the one 
share with the secret key.

Figure 6. Similarity rate among shares comparing the M-block models.

The 2-blocks model improved the previous 1-block original scheme enhancing the security. The results appeared 
simple improvement reducing the average of similarity rate (Vsh) to be 62.13% and the average similarity rate (Vsk) 
decreased to 77.34%. The capacity of shares generating by this method is considered lower than the1-block model, 
but can be acceptable based on the user application, as observed in Fig. 6. In fact, the security level of this 2-blocks 
method can be observed to be still low as will be explained in the coming models.

The 4-blocks model shows clear improvement compared to the previous two models, 1-block and 2-blocks models. 
Its similarity between shares is found to reduce the rate (Vsh) to 41.84 % and the average similarity rate (Vsk) among 
SK reduced to 58.85%, as observed in Fig. 6. The capacity of shares decreased a lot in this model, which is statistically 
due to increase in the number of flipped zeros, which approximately changed the entire SK sequence.

The most secure model in this study is the 8-blocks model. It gave the best results among the rates of the previous 
models, as observed in Fig. 6. This 8-blocks model showed that the average of similarity rate (Vsh) and (Vsk) reduced 
to 28.75% and 34.38%, respectively. In fact, as expected, this 8-blocks model gives the lowest capacity in number of 
shares making its degradation in its applicability. Therefore, it is preferred to choose the appropriate M-block model 
based on the application need, i.e., to generate the sufficient number of shares with recommended security for the 
realistic CBSSS.

To prove the study further, for generalizing the contributions, we tested the M-block CBSSS on many other random 
samples of SK, as listed in Table 9. Interestingly, the similarity rates (Vsh) and (Vsk) varied relying on the number 
of zeros within the RNG generated secret key, as well as the distribution mechanism of these zeros within the secret 
key sequence, as visualized in Fig. 7 and Fig. 8. This comprehensive testing permitted stating the contribution of the 
8-blocks model to the optimal method to generate shares recommended for running secure counting-based secret 
sharing scheme CBSSS.
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Table 9. Average similarity rate of shares comparing different SKs applied to M-block models.

N Hex SK
Number 

of 
Zeros

Original 
1-Block Within 2-Blocks Within 

4-blocks Within 8-Blocks

Vsh Vsk Vsh Vsk Vsh Vsk Vsh Vsk

SK1 15CBB4CAC20FD5E4 32 78.73 88.16 63.09 77.57 45.65 61.28 34.25 41.25

SK2 854B78391A5F4DA3 32 78.61 88.14 64.49 78.77 45.61 61.46 33.38 40

SK3 9A292DF2C52B71E9 31 78.7 88.16 64.55 78.75 47.39 63.39 35.59 37.5

SK4 ED8D3C2B25C3A749 31 78.57 88.13 65.82 79.81 46.84 62.86 35.59 41.67

SK5 11E69633E9CC53B0 33 78.47 88.11 62.37 77.34 44.12 60.76 30.13 38.13

SK6 70D6872AD85DC6A5 32 78.61 88.14 64.48 78.72 45.35 61.63 31.56 39.38

SK7 E05E7C3FCDA5279C 28 78.89 88.19 69.79 82.46 52.05 67.32 35.24 38.54

SK8 179BF475C4D6F891 29 78.95 88.2 68.31 81.2 50.67 65.89 36.11 38.54

SK9 B1E3258E374F319E 30 78.78 88.17 66.44 80.05 49.98 65.36 35.42 36.46

SK10 4BEA6A76C0F2D525 31 78.76 88.17 66.46 79.95 47.51 63.39 34.9 37.5

SK11 D5C1B2C4261A9601 38 78.3 88.08 62.69 77.47 42.46 58.78 29.5 35

SK12 CC02DD9120213D41 40 78.32 88.09 64.1 77.77 45.57 61.68 34.53 44.58

SK13 ED509BC4962D794A 32 78.61 88.14 62.68 77.48 43.21 59.38 34.94 43.75

SK14 2D68073619A89E36 35 78.43 88.11 62.64 77.42 45.49 61.11 30.19 35.63

SK15 C48733170FC20E2E 35 78.68 88.15 63.4 77.51 45.66 59.38 32.13 35

SK16 D407141615A0C1DC 39 78.36 88.09 63.35 77.56 44.8 59.29 30.94 36.88

SK17 D8ADC09623105CE6 36 78.45 88.11 63 77.58 48.35 64.19 30.44 38.13

SK18 D2617CE1CF8C88E2 33 78.65 88.15 62.85 77.44 48.4 63.89 35.88 43.13

SK19 559AA8174F5E7E92 30 78.72 88.16 67.73 81.06 49.3 65.18 34.55 40.63

SK20 24032040A016808C 49 78.02 88.03 64.44 77.78 44.92 59.84 22.68 31.85

SK21 352600002840EBA2 45 78.22 88.07 63.23 77.64 47.38 62.82 30.92 40

SK22 0819005080400321 52 77.97 88.02 65.18 78 46.96 61.43 21.64 30.06

SK23 7108E8604000E92A 44 78.29 88.08 64.35 77.77 44.03 59.94 31.44 41.67

SK24 528800B138D07000 46 78.24 88.07 63.29 77.62 44.19 60.26 27.61 35.42

SK25 6C18208801521202 48 78 88.03 63.96 77.73 44.63 60 24.39 35.12

COMPARISONS WITH OTHER CBSSS METHODS
In this section, we will present a comparison of our proposed M-Block partitioning work of this paper with other 

CBSSS methods that have been presented as modifications serving the counting-based secret sharing scheme. The 
comparison is considering research of Taghrid Al-Khodaidi (2019) as well as Maimoona Al-Ghamdi (2018) in a 
separate manner raising related work different views. First, the comparison focused on Taghrid Al-Khodaidi (2019) 



Secure Shares Generation via M-Blocks Partitioning for Counting-Based Secret Sharing112

study observing the interesting different ways to generate the secret key, in order to get the reliable SK from the works. 
The second comparison focused on Maimoona Al-Ghamdi (2018) proposal in terms of shares generation schemes 
seeking optimized manners.

Figure 7. Random samples of SKs similarity rate among all shares for all M-block models.

Figure 8. Random sample of SKs similarity among one share with SK for all M-block models.

As briefed earlier, Taghrid Al-Khodaidi (2019) work proposed the methods to produce seven secret keys SKs. 
Then, the system compares between all seven secret keys SKs to find the best secret key SK to use. Our work 
considered the comparison of SK to be performed with (Al-Khodaidi et al., 2019) seven random secret keys generated 
with the same RNG tool used in our work to compare them. Therefore, this study comparison will be based on the 
statistical tests from NIST to analyze the results. Note that NIST presents several standard statistical tests to measure 
the randomness of the secret key sequences (Rukhin et al., 2001). We selected some of these NIST tests that may be 
useful in comparing the reliability level for the secret key as generated by the proposed methods in counting-based 
secret sharing schemes. This research used Frequency test and Frequency test within a block as two tests from NIST 
800-22 tests (Rukhin et al., 2001) to evaluate the reliability of the secret key to calculate the p-value (AlQurashi et 
al. 2018). The p-value specifies the randomness indicating more applicable result of the secret key. As studied in 
AlQurashi et al. (2018), if the p-value is less than 0.01, the secret key is not acceptable and is considered nonrandom; 
otherwise, the secret key is randomly fine.

In this comparison study, we have determined the evaluation standard estimation that relates between p-value 
from frequency test and p-value from frequency test within a block, as a combined figure of merit value representing 
a preference estimation, namely, secret key weight. The aim of this comparison study is to analyze the best reliable 



113Adnan Gutub and Adel Al-Qurashi

secret key from both works tested between each other. The value of the secret key weight assumes both frequency and 
frequency within a block tests having the same priority weight, as presented in AT principle in the literature (Gutub, 
2006) for reasonable efficiency estimation, as AT (area × speed). Therefore, we compute the secret key weight by 
similar combination equation, Secret Key weight = p-value of Frequency × p-value of Frequency with a block; and 
the results are listed in Table 10. 

Table 10. Reliability of secret keys in our work compared to secret keys in Taghreed’s work.

Taghreed’s work (2019)Our M-blocks partitioning work

SK 
wieght

Frequency 
with a 
Block

Frequency 
(Monobit)

Number 
of zeros

Secret 
KeySK wieght

Frequency 
with a 
Block

Frequency 
(Monobit)

Number 
of zeros

Secret 
Key

0.0053830.433470.01241942SK10.796730.9927080.80258732SK1

0.2032140.9617310.211337SK20.7468370.746837131SK2

0.0294490.6472320.045542SK30.7153390.8912920.80258732SK3

0.0018780.1512040.01241942SK40.2690760.847990.31731133SK4

0.0092210.3771540.02444940SK50.4608540.7468370.61707530SK5

0.0289390.6360310.045541SK60.449950.9927080.45325535SK6

0.0041470.333930.01241942SK70.4657720.5803380.80258733SK7

Considering the comparison results listed in Table 10, all the samples selected are secret keys passing the two tests 
(frequency test and frequency test with a block) in both works, i.e., this work and the acceptable best results of Taghrid 
Al-Khodaidi work (2019).  Note that they both gave random sequence showing observed interesting differences. It 
is to be remarked that all the seven experiments for the best secret keys generated by Al-Khodaidi (2019) models 
show lower level secret key weight compared to the secret keys weight generated by our work RNG of M-blocks 
partitioning presented here. This identification shows high reliability of the secret keys to be valid from our work as 
preferred recommended to be used in counting-based secret sharing scheme, as shown clearly in Fig. 9.

Figure 9. Reliability of secret key in our work compared with Taghreed’s work.

Consider the related work presented by Maimoona Al-Ghamdi (2018) that suggested to similarly enhance security 
and efficiency of CBSSS but affecting the shares generation process with different manner. The comparison study 
enabled verification tool by choosing valid secret key to determine the shares generation models in a fair research 
platform. In fact, this comparison was performed involving all studied models from (Al-Ghamdi et al., 2018) in both 
works presented in relation to the four proposed models. The comparison considered our M-block generation of shares 
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via 1-block, 2-blocks, 4-blocks, and 8-blocks, to be similar to the three proposed models (Basic, New, and Merged) 
of the work of Al-Ghamdi et al. (2018). We discussed the security levels analysis of the different proposed models in 
both works by computing the average similarity rate (Vsh) among all shares generated from the models, as well as the 
average similarity rate (Vsk) between the share within the secret key as mentioned in this M-block partitions CBSSS 
paper. In addition, this comparison includes computing the number of shares generated in each model. Table 11 shows 
that these comparisons depended on their outcomes existing from our work, as well as the work of Al-Ghamdi et al. 
(2018). We used three experimentations of the secret key, which suits each method in a fair comparison manner.

Table 11. Security rate compared to the work of Al-Ghamdi et al. (2018) models.

Work Experiment Model Number of shares Vsh Vsk

Others (Al-
Ghamdi et al., 

2018)

SK1 Basic Shares Generation 820 78.28 88.08

SK2 New shares generation 666 78.30 88.08

SK3 Merged Shares Generation 1056 77.96 88.10

Our work SK1

Original 1-Block 528 78.43 88.10 

Within 2-Blocks 136 62.13 77.34 

Within 4-blocks 36 41.84 58.85 

Within 8-Blocks 10 28.75 34.38 

Consider the results of Table 11 showing all shares generation models proposed by Maimoona>s work (Al-Ghamdi 
et al., 2018) as well as our M-block partitioning proposal in a fair comparison listing. The similarity rate (Vsh) of the 
other works appeared to raise above the average of all shares with a percentage more than 77%, as in Fig. 10. The 
average of similarity rate (Vsk) among the shares of SK raised around 88 %, as also shown clearly in Fig. 11. Note 
that the 1-block model representing the original shares generation method in our work showed the same range of 
similarity rate (Vsh) and (Vsk) to the work of Al-Ghamdi et al. (2018), as detailed visually in Fig. 10 and Fig. 11. In 
fact, these percentages are considered very high indicating low security level compared to all other M-block models, 
i.e., 2-blocks, 4-blocks, and 8-blocks of our proposed work with similarity rate (Vsh) of percentages values 62 %, 
41%, and 28%, respectively. Remark the average similarity rate (Vsk) reduction of percentages to all models as shown 
in Fig. 11 confirming the fact. Consequently, this low similarity rate observed related to our M-block partitioning 
scheme of both (Vsh) and (Vsk) leads to higher level of security.  This can be considered as an advantage of the shares 
generation models presented in our work as giving higher security level of shares compared to all models of the work 
of Al-Ghamdi et al. (2018).

Figure 10. Similarity rate among shares in both works.    
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On the other hand, all presented models of generating shares in the work of Al-Ghamdi et al. (2018) gave a 
large number of shares compared to our proposed M-block partitioning models in our work. This fact is found clear 
considering the merged shares generation model in Maimoona’s work (Al-Ghamdi et al., 2018). As expected, the 
number of generated shares in each model of our work reduced by rising the security level as shown in Fig. 12, which 
made clear tradeoff price to be paid. This tradeoff issue is not the case with Maimoona Al-Ghamdi (2018) work 
showing that increasing number of shares found appropriate CBSSS strategy whenever applications need to have very 
large number of shares.

Figure 11. Similarity rate among one shares with SK in both works.

Figure 12. The number of generated shares in both works.

CONCLUSION
This work has presented secret key SK M-block partitioning models for shares generation of counting-based secret 

sharing for the objective of increasing security. The implementation designed the system increasing its size of SK to 
64-bits as the minimum required password in real-life applications. The research considered several M-blocks models, 
namely, the 1-block original model, 2-blocks, 4-blocks, and 8-blocks models. All models shares generations have been 
performed via the 1-bit and 2-bit methods applied within each block, i.e., to generate the shares. The study detailed 
the models’ pros and cons testing all possibilities and further generalized the remarks assuming openly tested secret 
keys pretending real-life scenarios. 

The research noticed clear effect of each model on the security level within generated shares from SK. We 
calculated the averages of the similarity rate among all shares generated by the different models as well as the average 
similarity rates of shares among SK providing interesting security level remarks. The study proved determining the 
level of security to be in relation to the application since it clarified the tradeoff fact between security and number of 
shares (pretending capacity).



Secure Shares Generation via M-Blocks Partitioning for Counting-Based Secret Sharing116

The results showed the rise in the average percentage of the similarity rate among all shares compared to each other 
expressing the rates by the 1-block original, 2-blocks, 4-blocks, and 8-blocks models, as average percentages of 78%, 
66%, 47%, and 28%, respectively. Similarly, the study also considered the average percentage rate of the similarity 
rate among one share with SK as the rates of the 1-block original, 2-blocks, 4-blocks, and 8-blocks models, as average 
percentages of 88%, 80%, 62%, and 37%, respectively. These average similarity rates have been consistently decreasing 
as the number of blocks increases indicating that higher number of blocks provides higher security. However, as the 
security increases, the number of shares capacity decreases showing a real tradeoff optimization challenge to be 
addressed as future work. It is clearly noted that whenever we are increasing the division partitions within the secret 
key as more numbers of blocks, the security increases with the expense taken from the number of shares as limiting 
the number of application users. This problem of increasing the security level in shares generation methods opened 
the issue of the lower capacity to produce shares that need to be further researched.

The study concluded that the 8-blocks model is providing the highest security to generate shares running the 
counting-based secret sharing scheme, which can be useful and recommended for applications with limited number 
of users not requiring a lot of shares, such as nuclear missile launch control, opening the vault in central banks, 
considerable medical agreement, and sensitive encryption keys. Further future research can recommend varying the 
block sizes as well as increasing the size of SK to 128-bit and analyzing its effect on security and capacity. Also, we 
can suggest other methods to increase vagueness on shares generation in counting-based secret sharing pretending to 
increase the security within more numbers of users.
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