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ABSTRACT

The concern for ever-increasing demand for electricity, progressive depletion of fossil fuels, reduction in carbon
footprint, improved infrastructure reliability, etc. have encouraged the power utility companies to adopt renewable
energy sources in conventional power systems. The enhanced penetration of non-dispatchable renewable energy
sources such as solar photovoltaic (PV) and wind energy into existing distribution and transmission networks had
led to various issues of concern regarding system voltage stability. This paper presents the important issues such as
voltage stability based optimum locations and sizing of distributed generation (DG) units, voltage stability assessment,
and improvement techniques. The impact of power system devices such as fixed capacitors, flexible AC transmission
system (FACTS), and energy storage system (ESS) on voltage stability of transmission and distribution networks are
also investigated. The review results provide a comprehensive background for the voltage stability investigation in
non-dispatchable renewable integrated power systems with major outcomes and findings of future research work in
the field of power system stability.

Keywords: Power system stability; wind energy; solar photovoltaic systems; static VAr compensators; energy
storage systems.

ABBREVIATIONS
AA Affine Arithmetic MIMO Multi input and multi output
AVRs Automatic voltage regulators MINLP Mixed integer nonlinear

programming

BESS Battery energy storage system MPC Model predictive control
BFOA Bacterial foraging optimization algorithm | MSC Mechanical switched capacitor bank
BTS Brazilian test system NLP Nonlinear programming
CCP Chance constraint programming OLTC Online tap changer
CPF Continuation power flow PCC Point of common coupling
CSP Concentrated solar power PDF Probabilistic distribution function
DFIG Doubly fed induction generator PMU Phasor measurement unit
DG Distributed generation PSO Particle swarm optimization
DSTATCOM | Distributed static compensator PV Photovoltaic
DVAR Dynamic volt amp reactive RSC Rotor side converter
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DVCI Dynamic voltage collapse indicator SCC Short circuit capacity

EDF Empirical distribution function SFLA Shuffled frog leaping algorithm

ESS Energy storage system SMES Superconducting magnetic energy
storage

FACTS Flexible AC transmission system SNB Saddle node bifurcation

FC-TCR Fixed capacitor- thyristor controlled reactor | S-NLP Stochastic nonlinear programming

FRC Fully rated converter SRSM Stochastic response surface method

FRT Fault ride through STATCOM | Static synchronous series
compensator

FSIG Fixed speed induction generator SvC Static Var compensator

GA Genetic algorithm SVM Support vector machine

GSC Grid side converter TC Transformer tap changer

HPSO Hybrid particle swarm optimization VAR Volt ampere reactive

ICA Imperialist competitive algorithm VIR Voltage instability risk

MM Impedance modulus margin VSC-HVDC Yoltage source converter based
high voltage direct current

LTVS Long term voltage stability VSCOPF Voltage stability constraint optimal
power flow

LVRT Low voltage ride through VSI Voltage stability index

MCS Monte Carlo simulation VSM Voltage stability margin

MERC Modified equivalent reactance compensation | VSPA Voltage stability probabilistic
assessment

INTRODUCTION

For the last two decades, power system stability has been recognized as a major challenge for power system
engineers (Kundur, 2011). Around the world, the occurrence of blackouts from 1965 to 2017 has shown its
significance. Historically transient instability of the system was assumed to be a major cause of blackouts. This is
one of the mechanisms for loss of large portion of the grid due to inability of generators to maintain synchronism
during disturbances. From blackout studies, it was found that voltage instability has also been recognized as a major
cause behind several blackouts (Glavic et al., 2012). Voltage stability is a local phenomenon and driven by load
characteristics. According to IEEE/CIGRE joint task force report, “Voltage stability refers to the ability of a power
system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial
operating condition” (Kundur, et al., 2004). Modern power systems are operating close to their stability limit due to
economic reasons. Recently, government’s new energy policies, sluggish transmission expansion, and environmental
constraints have encouraged the electrical utility companies to move towards the cleaner generation technologies as
wind, solar, geothermal, biomass, etc. Due to the rapid increase in the installed capacity of renewable power generation,
a comparison between present and future grids is shown in Figure 1. Over the last few years, the installed capacity
of wind energy and solar photovoltaic has increased drastically (Figure 2). The high penetration of these resources
into existing power systems is expected to have a significant impact on power system stability. As compared to
conventional power plant, renewable based generation utilizes a different set of technologies for electricity generation
and interconnection with the grid. Wind turbines of type III and type IV utilize power electronics based inverter for
delivering the power to the grid. Solar photovoltaic system generates D.C. electricity and an inverter is required for
connection with the grid. Inverters have no moving parts and often identified as having zero inertia because their
response during disturbances depends upon the specific control scheme they utilize during grid interaction.
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Figure 1. A scenario representing present and future electrical grid.

In the future, during the large injection of PV and wind power sources into the system, the stability of power
system needs to be maintained for smooth operation of the system. A comparison between different generator types

and capability of grid stability

is shown in Table 1.

Table 1. Summary of generator types and capability of grid stability.
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Figure 2. Worldwide installed capacity of grid connected wind and solar energy.
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The voltage stability problem may vary from few seconds to tens of minutes and therefore, it may be short term
or long term phenomenon. Analysis of short term voltage stability requires the solutions of appropriate differential
equations, whereas long term voltage stability can be analyzed using static as well as dynamic methods. A comprehensive
review of voltage stability indices (VSIs) has been presented in Modarresi et al. (2016). These indices are primarily
used for detecting weak lines or buses in the system and can also be used for DG placement and sizing or activating
countermeasures against voltage instability. A comprehensive review of optimal DG placement and sizing with
objectives of power loss minimization, voltage stability enhancement, and voltage profile improvement, etc. has been
highlighted in Sultana et al. (2016). In Shah et al. (2015), the authors have investigated several power system stability
issues related to the large scale penetration of solar PVs. In Xu et al. (2017), a review of current methodologies for
probabilistic based small signal stability analysis with a large scale wind integration had been investigated. Although
few review articles have been published in recent years either on voltage stability indices or wind/solar integration
studies on power system stability, none of the articles had reviewed the effects of large penetration of non-dispatchable
renewable resources, i.c., wind and solar photovoltaic on system voltage stability.

This review article is consolidated as follows: section 2 reviews optimal location and sizing of DGs in distribution
networks considering system voltage stability. Section 3 investigates the impact on system voltage stability with large
penetration of wind and solar PV sources. In section 4, various techniques/methodologies used for assessment of
voltage stability in renewable integrated transmission/distribution networks have been discussed. Methodologies for
enhancement of system voltage stability are investigated in section 5. Finally, section 6 concludes the critical review
points, observations, and future exploration of reviewed area.

VOLTAGE STABILITY CONSIDERATION FOR OPTIMAL
PLACEMENT AND SIZING OF DG

Depending upon the availability of natural resources, the electrical power generated from renewable sources
may be connected at distribution (low or medium voltage) or transmission networks. The DG technologies that
can provide electricity to customers at reasonable prices without compromising the security and reliability of the
distribution network have huge potential (Atwa et al., 2010). The integration of DG units at appropriate locations into
a distribution network plays a critical role in improving system performance, i.e., power loss minimization, voltage
profile improvement, enhancement of system stability and loadability limit, etc. A comparison of classical and meta
heuristic techniques for optimal location and sizing of DG units in distribution networks was reviewed in Prakash
et al. (2016). Authors had also addressed new optimization techniques as shuffled frog leaping algorithm (SFLA),
imperialist competitive algorithm (ICA), bacterial foraging optimization algorithm (BFOA), etc. for the solution of the
DG placement problem. In the literature, the issue of optimal location of DG has been solved with different objective
functions (Figure 3). The voltage stability assessment techniques, i.e., PV/QV curve, Modal, and Bifurcation analysis,
have been used by researchers for optimal location of DGs. In Tamimi et al. (2012), it has been investigated that the
penetration level of power output from wind farms can be increased by placing wind farms at voltage strong buses.
Also, the additional penetration level can be increased by using static VAR compensator (SVC) at weak buses of the
network. The locations of voltage strong or weak buses were located using the QV curve method.
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Figure 3. Classification of optimal DG placement objectives.

Optimization techniques such as mixed integer nonlinear programming (MINLP) (Al-Abri et al., 2013), multi-
objective nonlinear programming (NLP) (Esmalili et al., 2013), dynamic programming search method (Esmaili et al.,
2014), hybrid particle swarm optimization (HPSO) (Aman et al., 2014), imperialistic competitive algorithm (ICA)
method (Poornazaryan et al., 2016), Monte Carlo simulation (MCS) embedded genetic algorithm (GA) (Liu et al.,
2011), and weighted aggregation particle swarm optimization (PSO) (Kayal et al., 2015) were used in the literature for
optimal location and sizing of DG considering voltage stability improvement of distribution network. All these studies
are summarized in Table 2 for clear perception.

IMPACT ON SYSTEM VOLTAGE STABILITY WITH NON-DISPATCHABLE
RENEWABLE ENERGY SOURCES

The low inertia response and intermittent characteristics of renewable energy sources (i.e. Solar PV and wind)
have increased the complexity of the conventional power system. The increased penetration of these energy resources
has transformed the inherent characteristics of the conventional power system and also have considerable effect
on dynamic behavior of various power system devices. Today large size wind farms of several MW capacities are
being connected to the high voltage network and their impact on the system is becoming more pronounced due to
large reactive power demand. The large consumption of reactive power with FSIG based wind farms had resulted in
increased power loss and also had an adverse effect on system voltage stability (Ha et al., 2004). In Zhou et al. (2005),
authors have investigated the effect of different parameter variations on voltage stability and applied control strategies
to wind power plant model. The maximum penetration limit of the wind farm was found to be 20% of the SCC for the
stable operation. In Han et al. (2008), the size and location of the STATCOM are determined by the use of PV and QV
curve of system for a large wind farm integrated with weak power systems. In Inwai et al. (2005), the authors have
compared the steady state voltage profile and LVRT capability of wind farms integrated with various reactive power
compensation devices such as FC-TCR and SVC. In Kehrli et al. (2003), the performance of SVC, STATCOM, and
DVAR integrated with wind farm for steady state and transient performance of wind farms had been explored. In Saad-
Saoud et al. (1998), reactive power and voltage control schemes for STATCOM were investigated in wind integrated
power system. In Liu et al. (2018), a multi-stage planning for aged equipment retirement and STATCOM placement to
enhance short term voltage and LVRT capabilities of wind turbines under dynamic load scenarios has been presented.
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In Liew et al. (2002), it is shown that, by implementing active network control such as generation curtailment, reactive
power control and coordinated control of OLTC for voltage regulation within a distribution network increase the
total installed capacity of DG. In Aly et al. (2014), Kawabe et al. (2015), and Kawabe et al. (2017), the dynamic
behavior of solar PV system during voltage sags or fault conditions is highlighted. Tamimi et al. (2013) proved the
fact that distributed PV generations are found to be more effective in improving system voltage stability with respect
to the centralized PV generation. In Tan et al. (2007), Xue et al. (2011), and Yan et al. (2012), dynamic studies with
an abrupt change of system parameters as irradiance, temperature, etc. have been carried out to analyze the impact
of large penetration of PV generation into the power system. In Eftekharnejad et al. (2013), the impact of residential
roof top PVs and utility scale solar PVs on a large interconnected power system is studied. It is observed that, during
disturbances, higher solar PV energy penetration results in greater voltage dips and also loss of distributed PVs in a
certain geographical area results in more oscillations. All these studies are summarized in Table 3 below.

VOLTAGE STABILITY ASSESSMENT TECHNIQUES FOR SYSTEMS WITH
NON-DISPATCHABLE RENEWABLE SOURCES

In the literature, the authors have proposed and implemented various static and dynamic techniques for assessment
of voltage instability. Static techniques utilize Newton Raphson based power flow equations for assessment of long
term voltage stability (LTVS). However, dynamic methods utilize time domain simulation with mathematical modeling
of various power system components, e.g., tap changing transformers, generators, governors, and automatic voltage
regulators (AVRs) for assessment of both short and long term voltage stability (Cutsem, 2000).

Plotting P-V and Q-V curves at selected load buses are the most widely used methods for assessment of voltage
stability (Ajjarapu 2009). The P-V curve can be plotted at load buses using repetitive load flow solution by increasing
load in steps until solution diverges. The system load at which Jacobian of Newton Raphson method becomes singular
is the maximum loading point. The divergence of load flow solutions was resolved by the continuation power flow
(CPF) technique. It depends on reformulating the load flow equations and applying a locally parameterized continuation
technique (Ajjarapu et al., 1992). A salient feature of CPF is that it remains well conditioned at and around the critical
point (maximum loading point). The general idea of CPF algorithm is given as follows.

f(6.,V,1)=0 0 < A < Acritica (1)

where & and V represent the vector of voltage angles and magnitudes at buses, respectively. Parameter A is a
scaling factor and used to generate different scenarios for loads and generator power outputs according to following

equations.
P, =P, (1+1M, ) )
B, =P, +A(M,S,,, cosb;) 3)
Q =0 +A(M, S, sinb) )

where P, , O, are the base case real and reactive power at load bus k, respectively, M, is a multiplying factor
which indicates the rate of change in load power at bus k as A changes, 0, is the power factor angle of load at bus k,
and Sy 15 the base value of apparent power.
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In Flatabo et al. (1990), the sensitivity of bus voltage with respect to reactive power variation as a tool for assessment
of voltage stability is done. Based on eigenvalues and corresponding eigenvectors of reduced Jacobian matrix, a
modal analysis technique is proposed in Gao et al. (1992) for voltage stability assessment in larger power systems.
Modal analysis technique is an indirect method for calculating dV/dQ sensitivities. For voltage stability assessment,
several voltage stability indices (VSIs) have been proposed in the literature for finding the margin between current
operating point to a critical point. In Modarresi et al. (2016), a comprehensive review for VSIs is classified in bus
voltage stability indices (VSIs), overall VSIs, and line VSIs. Other methods (e.g., Bifurcations, direct methods, energy
functions, etc.) for assessment of voltage stability margin can be found in the literature (Ajjarapu et al., 1992; Dobson
et al., 1993; Alvarado et al., 1994; Overbye et al., 1991; Overbye, 1993). For finding the loadability limit of system,
various authors in the literature have formulated it as an optimization problem. Different optimization techniques have
been used for finding the maximum loading point (EL-Dib et al., 2006; Kuru et al., 2015; El-Keib et al., 1995; Popovic
et al., 1998, Mu-Chun et al., 1999; Tso et al., 1995, Tso et al., 1996; Sajan et al., 2015).

In recent years, wide deployment of phasor measurement units (PMUs) in power systems had opened a new
perspective for developing advanced voltage stability assessment techniques. The methods based upon measurements
can be classified as follows.

1. Measurement gathered at one location (Vu et al., 1999; Smon et al., 2006;Corsi et al., 2008; Wang et al., 2011)

2. Wide area monitoring (Liu et al., 2014; Glavic et al., 2009; Glavic et al., 2009; Beiraghi et al., 2013; Mohammadi
et al., 2015; Diao et al., 2009).

In Liu et al. (2015), wide area synchrophasor based measurement is used for LTVS detection in FSIG based
wind farm integrated in the distribution network. Figure 4 shows the measurement based equivalent model of FSIG
interconnected to the grid. The proposed VSI is formulated as follows.

Z+Z
SLVSI = £

)

w

where SLVSI is synchrophasor based long term voltage stability indicator, Z, is the impedance of the transmission
line, and Z, is time variant FSIG equivalent line impedance.

model

Figure 4. The equivalent model of FSIG connected to the grid.
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In Venkatesh et al. (2007), a dynamic voltage collapse indicator (DVCI) based on local measurements is proposed,
which reflects the possibility of voltage collapse across the feeder in wind electric generator connected distribution
system. The proposed DVCI is formulated as follows.

pvci=f (Vi P, 0;) (6)

A r,-jE,-er,;,-Q (] +x; ) S +0;
£(Vi.P.0;) = [ ( A )} ©
z(rin:/ + x,:,Q,:,)

where V; is the sending end voltage, r;; and x;; are the resistance and reactance between bus i and j, and P; and
Qj are real and reactive power flow at bus j, respectively. In Haque (2016), the authors have proposed a static VSI
at the receiving end bus, which varies between 0 and 1 when the load changes from no load to the maximum value
(at voltage collapse point).

VI =[2(RP+XQ)-V> ] ~4(P* +Q*)(R* +X*) (8)
where Vi is the sending end voltage, S=P+jQ is the complex power flow at receiving end, and Z=R+jX is the

impedance between sending and receiving bus. In Konar et al. (2015), a large signal voltage stability index has been
proposed.

Index = {rlr;af [diag (J o ) .

—diag(J,;,.')t

}}x103 ©)

where J, = [J —J oot 2o py | is known as the reduced Jacobian matrix. In Li et al., (2016), an assessment index

IMM based on the Thevenin equivalent circuit is used to measure voltage stability in the distribution system with wind
plant. The proposed index IMM (u,,) is formulated as follows:

Thev,

2.0,

2|2

IMM (p,) = (10)

where Z;p=V/I is the static equivalent impedance and Zm,,= - dV/dl is comprehensive dynamic equivalent
impedance.

The power generation capacity of offshore wind farm is much larger than onshore wind farm and it can be integrated
with onshore AC grid by the voltage source converter based high voltage direct current (VSC-HVDC) technology
(Figure 5).
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Figure 5. VSC-HVDC connected wind farm.

In He et al. (2014), a HVDC model is proposed for online voltage instability detection in integrated AC/DC
systems by the Thevenin impedance matching. Using the “I™” shaped equivalent model, a HVDC connected DFIG
based offshore wind farm is presented in Figure 6. A dynamic model is used to represent DFIG based offshore wind
farm. The symbols of r; and X’ correspond to stator and transient reactance of DFIGs, respectively. Zr is the equivalent
impedance of the cable and transformer system. The equivalent circuit as shown in Figure 6 can be transformed into
a Thevenin equivalent circuit (Figure 7).

) (n+jX +2,)z,

= 5 (11)
r+jX +Z.+Z,
Vi Iy I2 V,
Z; | s b I
1 1
77777 T 1 — !
i ! | E Ze, ! pCC
! 1
I | 1
| | or4x Offshore I ]
N N L
L ; s
| i DFIG i !
i £ | dynamic ; !
! : model ] !
]
\ ! HVDC

I equivalent
model

Figure 6. Equivalent model of HVDC connected offshore wind farm.
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PCC

Figure 7. Equivalent Thevenin circuit for an integrated AC/DC grid.

The difference between the magnitude of load and Thevenin impedance i.e.|Z;oqq| — |Z¢ | can be used to determine
the margin between the current operating point to a voltage collapse. The majority of techniques available in the
literature have used deterministic power system parameters for voltage stability assessment. It is a valid approximation
as renewable energy sources have a negligible percentage of contributions in traditional power systems. The power
system with large penetration of renewable generation needs to be accounted for uncertainty and the voltage stability
problem needs to be formulated as a stochastic problem. Considering the stochastic nature of the problem, various
voltage stability assessment techniques are proposed by several researchers in the literature (Xiuhong et al., 2002;
Kataoka, 2003; Leite et al., 2000; Haesen et al., 2009). A probabilistic based CPF considering load variation is proposed
by Xiuhong et al. (2002). In Kataoka (2003), a hyper-cone model is proposed to model load variations. The proposed
approach detects the loading limit on the intersection of the transfer limit surface and the hyper cone loading. In Leite
da Silva et al. (2000), MCS method is used for voltage stability assessment. To reduce the computational cost, a fitting
method called stochastic response surface method (SRSM) is used by Haesen et al. (2009). In Wang et al. (2013), the
authors assessed voltage stability of the system in two stages. In the first stage, approximate probabilistic distribution
of load margin is assessed with a minimum number of samples by use of SRSM and in second stage screening
scenarios method is proposed to screen out the severe scenarios. For probabilistic voltage stability assessment, MCS
is a widely used method to model a variety of system complexities (Rodrigues et al., 2010). Considering load forecast
uncertainties, a cumulant based method is proposed for detection of saddle node bifurcation point (Schellenberg et
al., 2006). The stochastic nonlinear programming method is used to solve the objective function, which leads to an
estimation of PDF for loadability limit.

In Munoz et al. (2013), an affine arithmetic (AA) method for voltage stability assessment with IRE sources is
presented. The AA based method is formulated in order to compute P-V curves and to calculate the maximum loading
margin. Moreover, the proposed AA based method does not depend on PDF's associated with the uncertain variables,
which is modeled as intervals with no assumptions regarding their probabilities.

In Almeida et al. (2013), with the use of P-V & Q-V curves, a probability based voltage stability assessment
technique considering renewable energy sources is done. Voltage collapse and the intermittent generations are analyzed
by a combination of MCS and EDF. In recent years, various researchers had published research on small signal
stability assessment of the system considering large penetration of PV system (Eftekharnejad et al., 2013; Bueno et
al., 2016; Liu et al., 2016) but very few authors have focused on voltage stability aspects. In Du et al. (2013), based
on probabilistic optimal power flow in consideration of static voltage stability margin as a constraint, the assessment
of PV penetration capacity has been investigated. In Mitsugi et al. (2014), impact of solar PV integration on multi-
machine power system is studied, whereas in Verschueren et al. (2011), the voltage violations are investigated in a
distribution grid with solar PV penetration. All these studies are framed in Table 4 for consolidated analysis.
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ENHANCEMENT OF VOLTAGE STABILITY FOR SYSTEMS WITH
NON-DISPATCHABLE RENEWABLE ENERGY RESOURCES

Many countries in the world are developing or modifying the existing grid codes for integration of large scale
renewable energy sources. The risk of voltage instability due to shortfall of reactive power support is one of
the critical issues under severe contingencies in power systems. Each country has a different LVRT capability
requirement of wind farm and fundamentally it demands that the wind farm must remain connected to the grid
during voltage dips in the system. Fast control of reactive power from reactive power compensation devices is
an essential requirement for LVRT capability of the wind farm (Hossain et al., 2014). Various techniques used in
literature for enhancement of voltage stability of power system with intermittent renewable energy (IRE) sources
are as shown in Figure 8.

Improved controller design for wind
or solar photovoltaic system

Techniques for voltage Application of FACTS devices
stability improvement (STATCOM, SVC etc.)

Application of energy storage
system (ESS)

Figure 8. Voltage stability improvement techniques for system with renewable energy resources.

Integrating the STATCOM as compared to SVC can enhance the LVRT capability of a wind farm with squirrel
cage induction generator (Molinas et al., 2008). In Roy et al. (2013), static and dynamic VAR planning are proposed
based on reactive power margins for enhancement of dynamic voltage stability of the distribution system with wind
DG. To calculate the margin between the current operating point to voltage collapse point, a reactive power index (Q
loadability) is used. The Q loadability index is used to locate the appropriate location for compensating devices and
is calculated using the equation (12).

Q (%) = marg in _new margin_old x100

loadability Q ( ] 2 )

marg in _old

where Quargin new aNd Quarein ola Tefer to the reactive power margin of the bus before and after compensating devices,
respectively. In Jiang et al. (2015), the measurement data collected from synchrophasor are utilized in support vector
machine (SVM) for detecting the voltage condition of the distribution system. The controller used with wind turbine
generators is actuated by the prediction results. A multi input and multi output (MIMO) auxiliary coordinated control
strategy based on model predictive control (MPC) in wind turbine generator control loop is proposed (Figure 9). The
proposed controller will remain inactive during normal operation. However, when a fault or other disturbances occurs
the instability predictor will actuate this controller.
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MPC
controlled
Pitch
Angle
Pitch
Angle
Wind Turbine
—— Wind d ;
e ped Wind
Power to turbine
Generator controller
Grid Generator
Excitation
MPC
controlled
excitation
voltage

Figure 9. Model predictive control used in a wind turbine system.

The use of energy storage systems (ESSs) and their coordination with IRE sources (i.e., wind and solar) has
been emerging as a solution in the recent years. The concept of ESS is to mitigate uncertainty in wind and solar PV
generation. In this regard, the ESS technologies that have been investigated are pumped storage hydro plants, battery
energy storage systems (BESS), super capacitors and superconducting magnetic energy storage systems (SMES), etc.
In Le et al. (2012), a significant improvement has been shown in grid voltage stability with ESS based wind farm
integration. Different energy storage systems, which could be utilized with renewable energy sources, are shown in
Figure 10.

Fuel Cell |
Chemical Storage
Hydrogen Storage |
Flow Battery |
Electrochemical oy
Storage Lithium lon Battery |
Lead Acid Battery |
Energy Storage
System (ESS)
Superconducting Magnetic
Energy Storage (SMES)
Electrical Storage
Supercapacitors |
Fly Wheels |
Mechanical Pumped Storage Power
Storage i Plants
Compressed Air Energy
Storage

Figure 10. Energy storage systems used in renewable energy systems.
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CONCLUSION

In this work, a comprehensive review of system voltage stability considering non-dispatchable renewable energy

sources, i.e., wind and solar PV, has been undertaken. The important outcomes from the available literature reveals
the following facts:

1.

Although classical voltage stability assessment methods as P-V/Q-V curves, modal analysis, CPF, etc. are being
used by various researchers for optimal DG placement and sizing, due to uncertain power outputs from wind and
solar PV, probabilistic based studies would provide more accurate results in finding optimal locations and sizes of
DGs.

In literature, various optimization techniques, e.g., PSO, GA, NLP, dynamic programing, etc., have been investigated
for optimal location and sizing of DG. Further, the research area can be explored by use of various combinations
of hybrid optimization techniques as this will amalgamate the strengths and uniqueness of optimization techniques
and produce better results.

The research on system voltage stability with large penetration of wind/solar PV generation is undertaken primarily
for either fault conditions or/and voltage sage whereby different control techniques have been applied to the control
loop of wind/ solar PV generators. However, if coordinated control of FACTS devices, e.g., SVC, STATCOM, etc.,
is incorporated with wind/solar energy sources, then it would enhance the voltage stability margin of the system.

The recent literature in the area encourages the use of advanced measuring techniques such as phasor measurement
unit (PMU), which facilitates the online assessment of voltage stability in wide area measurement systems
(WAMS).

Apart from FACTS devices, energy storage devices like BESS, SMES are also proving this mettle for improving
system voltage stability. Hence, there is a need to explore the FACTS devices along with ESS for appreciable
enhancement of voltage stability of the system.
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