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ABSTRACT

This paper considers optimization of a multi-product economic production quantity 
(EPQ) model with scrap items and an improved multi-delivery policy. We extend the 
work of Chiu et al. (2013a) by incorporating an improved n + 1 multi-delivery plan 
into their model with an aim at reducing vendor’s inventory holding cost. Under such a 
specific shipment policy, for each product an extra delivery of finished goods is made 
during production uptime to satisfy the product demand for the period of vendor’s 
uptime. Then, when rework process comes to an end (i.e., the rest of the production 
lot is quality assured) n fixed quantity installments of finished goods are delivered to 
buyers at a fixed time interval. The objectives of this study are to determine the optimal 
rotation production cycle time that minimizes the long-run average system cost per 
unit time and reveals the effects of random scrap rate and the improved delivery policy 
on the optimal production cycle time. With the help of a mathematical model a closed-
form optimal common cycle time is derived. Through a numerical example, practical 
usages of obtained results and significant savings in vendor’s stock holding cost are 
demonstrated.

Keywords: Multi-product EPQ model; multi-delivery plan; optimization; rotation 
cycle time; scrap.

INTRODUCTION

A multi-product economic production quantity (EPQ) model with scrap items and an 
improved multi-delivery plan is studied in this paper. The conventional EPQ model 
(Taft, 1918) considers a perfect manufacturing process for a single product and a 
continuous issuing policy of finished items. EPQ model employed a mathematical 
technique and optimization process, balanced production setup and inventory holding 
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costs, and derived a most economic production lot that minimizes total production cost 
for proposed manufacturing system. Despite its simplicity in assumption, the concept 
of traditional EPQ model has since been adopted and applied industry-wide (Wagner 
& Whitin, 1958; Hadley & Whitin, 1963; Osteryoung et al., 1986; Tersine, 1994).

In real-life manufacturing environments, due to different unpredictable factors, 
production of defective items seems to be inevitable. Mak (1985) employed 
mathematical modeling to examine an inventory system, where the number of units 
of acceptable quality in a replenishment lot is uncertain and the demand is partially 
captive. He assumed that the fraction of the demand during the stock-out period which 
can be backordered is a random variable whose probability distribution is known. The 
optimal replenishment policy was synthesized for such a system. A numerical example 
was used to illustrate the theory. The results indicated that the optimal replenishment 
policy is sensitive to the nature of the demand during the stock-out period. Schwaller 
(1988) studied an EOQ model by including both fixed and variable inspection costs, 
for finding and removing a known proportion of defective items in incoming lots. 
Hariga and Ben-Daya (1998) considered the economic production quantity problem 
in the presence of imperfect processes. The time to shift from the in-control state to 
the out-of-control state was assumed to be flexible, and they provided distribution-
based and distribution-free bounds on the optimal cost. For the exponential case, they 
compared the optimal solutions to approximate solutions proposed in the literature. 
Inderfurth et al. (2006) investigated a deterministic problem of planning the production 
of new and recovering defective items of the same product manufactured on the same 
facility. The processing of a batch includes two stages: the regular production and the 
rework process. While waiting for rework, defective items deteriorate and there is a 
given deterioration time limit. Deterioration results in an increase in time and cost 
for performing rework processes. The objective of their study was to find batch sizes 
and positions of items to be reworked such that overall production-inventory costs are 
minimized. A polynomial dynamic programming algorithm was presented to solve 
this problem. Other studies that addressed different aspects of imperfect production 
systems can also be found in Chiu et al. (2013b); Kamsu-Foguem et al. (2013); Sarkar 
& Sarkar (2013); Lin et al. (2013).

The continuous finished items distribution policy in conventional EPQ model is 
unrealistic when finished goods need to be distributed to outside customers in supply 
chains environment.  Multiple or periodic delivery policy is commonly adopted in 
such a vendor-buyer system. Goyal (1977) investigated an integrated inventory model 
for a single supplier - single customer problem. A method was proposed for solving 
those inventory problems, wherein a product made by a single supplier is procured by 
a single customer. A numerical example was provided to verify this solution process. 
Schwarz et al. (1985) determined the fill-rate of a one-warehouse N-identical retailer 
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distribution system. An approximation model was adopted from a prior study to 
maximize system fill-rate subject to a constraint on system safety stock. As a result, 
properties of fill-rate, policy were suggested to provide management, when looking 
into system optimization. Aderohunmu et al. (1995) demonstrated that a co-operative 
batching policy, based on cost information exchange between the vendor and the 
buyer, can significantly reduce total cost in the just-in-time (JIT) environment. The 
impact of such co-operation on total costs (including ordering, set-up, transportation 
and inventory holding costs) was examined for a long-term supply relationship. They 
indicated that joint optimization of both the vendor and the buyer’s operations do not 
necessarily result in a common lot size. Sensitivity of the resulting cost savings due 
to the exchange of cost information to changes in the relevant operating parameters 
was also analyzed. Swenseth & Godfrey (2002) demonstrated that the freight rate 
functions presented in the literature can be incorporated into inventory replenishment 
decisions without compromising the accuracy of the decision. They concluded that 
these functions can be incorporated without adding undue complexity to the decision 
process. Abdul-Jalbar et al. (2008) considered a multi-echelon inventory system in 
which one vendor supplies an item to multiple buyers. They assumed that the vendor 
produces the item at a finite rate and customer demand occurs at each buyer at a 
constant rate. The objective is to determine the order quantities at the buyers and the 
production and shipment schedule at the vendor in order to minimize the average total 
cost per unit time. The problem was formulated in terms of integer-ratio policies and 
a heuristic procedure was developed. Both solution procedures were illustrated with a 
numerical example. Performance of the heuristic for computing integer-ratio policies 
was demonstrated. Additional studies that addressed various aspects of periodic or 
multi-delivery issues in the vendor-buyer integrated systems can also be found in Chiu 
et al. (2013c); Cedillo-Campos & Sánchez-Ramírez (2013).

In manufacturing sector, for the purpose of maximizing machine utilization, 
vendors often manufacture multiple products in turn on a single machine. Gordon & 
Surkis (1975) presented an approach to determine control policies for a multi-item 
inventory environment, where the items are ordered from a single supplier and the 
demand for items are subject to severe fluctuations.  The time between orders can 
either be fixed or based on accumulating a fixed order quantity for all products. Their 
model balanced carrying and stock-out costs. An operational system structure was 
developed and a simulation procedure was used to determine the appropriate value 
of their inventory factor in the model. Zahorik et al. (1984) studied a multi-item, 
multi-level production scheduling problem with linear costs and production and 
inventory constraints at one key facility. Two multi-item problems were considered, 
one in which the constraint was on shipping capability and the other in which there 
was a final stage bottleneck machine. A multi-item facilities-in-series problem was 
formulated as a linear program. A 3-period result was used as the basis for a rolling 
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heuristic for T-period problems. Conditions under which this heuristic fails to find 
optimal solutions were discussed, and computational comparisons to standard linear 
programming were provided. Byrne (1990) presented an approach to the multi-item 
production lot sizing problem based on the use of simulation, to model the interactions 
occurring in the system. A search algorithm was used to adjust the lot sizes on the basis 
of the results of previous simulation runs, with the objective of achieving a minimum 
total cost solution. Zipkin (1995) explored the performance of a multi-item production-
inventory system. He compared two alternative policies, representing different 
modes of collecting and utilizing information, then derived a closed-form measure of 
performance for one of them, the familiar first-come-first-served (FCFS) policy, and 
proposed a comparable approximation for the other, the longest-queue (LQ) policy. 
These results were illustrated, tested through simulations, and used to address several 
basic managerial issues. Khoury et al. (2001) considered a production facility that 
is used to produce more than a single item in order to maximize its utilization. They 
assumed the existence of capacity constraint and analyzed the lot scheduling problem 
under such an insufficient capacity. A two-product problem using the common cycle 
approach was examined. Extension to any number of products is discussed. Clausen & 
Ju (2006) studied an economic lot and delivery scheduling problem (ELDSP), where a 
supplier produces and delivers components of different types to a consumer in batches. 
The objective is to determine the cycle time, which minimizes the total cost per time 
unit. The purpose of their study includes the determination of the production sequence 
of the component types within each cycle. Computational behavior of two published 
algorithms; a heuristic and an optimal algorithm were investigated. With large number 
of component types, the optimal algorithm has long running times, so they developed 
a hybrid algorithm to assist them to find optimal solution in a more efficient manner. 
Guchhait et al. (2010) considered a multi-item inventory model of breakable items 
where demands of the items are stock dependent, and breakability rates increase 
linearly with stock and nonlinearly with time. Due to non-linearity and complexity 
of the problem, their model was solved numerically and final decisions were made 
using genetic algorithm (GA). They considered both fuzzy and stochastic uncertain 
inventory costs, and a chance constrained approach was used to deal with simultaneous 
presence of stochastic and fuzzy parameters. Different numerical examples were used 
to illustrate different cases of the problem. Björk (2012) developed a fuzzy multi-
item economic production quantity (EPQ) model, where a company has to decide the 
size of some production batches under uncertain cycle times. The uncertainty was 
handled with triangular fuzzy numbers and an analytical solution was found to the 
optimization problem. Chiu et al. (2013a) derived the optimal common production 
cycle time for a multi-item finite production rate (FPR) model with random scrap 
rate and n fixed quantity multiple delivery policy. Mathematical modeling along with 
optimization technique is used to solve the problem. A closed-form optimal common 
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production cycle time that minimizes the expected system costs is obtained. Effect of 
scrap rate on the optimal common cycle time was investigated and discussed through 
a numerical example. Studies related to different aspects of the multi-item production 
planning and optimization issues can also be found in Jodlbauer & Reitner (2012); 
Chiu et al. (2013d).

Aiming at lowering vendor’s inventory holding cost, this paper extends Chiu et 
al.’s work (2013a) by incorporating an improved n+1 shipment policy into their model. 
Under the proposed policy, one extra delivery of finished items is made in vendor’s 
production uptime to satisfy buyer’s product demands during the uptime. Then, upon 
completion of production, n fixed quantity installments of finished items are delivered 
to buyers at a fixed time interval. The objectives are to determine the optimal common 
production cycle time that minimizes the long-run average system cost per unit time, 
and study the effects of random scrap rate and improved delivery policy on the optimal 
cycle time and on the system costs.

MODELING AND FORMULATIONS

In this paper a multi-product economic production quantity model with random scrap 
rate and an improved multi-delivery plan under the rotation cycle policy is studied. 
Description of the proposed model is as follows: consider L products are manufactured 
in turn on a single machine and all items are screened and inspection cost is included 
in unit production cost C

i
 (where i = 1, 2, … , L). During production uptime of product 

i there is a x
i
 portion of random scrap items produced at a rate d

i
. Under the regular 

operating policy, shortages are not allowed, so the constant production rate for product 
i, P

i
 must satisfy (P

i
 – d

i
 – λ

i
) > 0, where λ

ι
 is the annual demand rate for product i, 

and d
i
 can be expressed as d

i 
= x

i
P

i
. For the purpose of lowering producer’s inventory 

holding cost, this study extends the work of Chiu et al. (2013a) by adopting a specific 
n+1 multi-shipment policy, and under the proposed n+1 delivery policy an initial 
shipment of finished goods is to meet customer’s product demands during producer’s 
uptime; then upon completion of regular production n fixed quantity installments 
of the finished products are transported to customers, at a fixed time interval t

n
 (see 

Figure 1).

Figure 2 depicts producer’s on-hand inventory level of perfect quality items of 
product i in the proposed n+1 delivery model (in blue lines) and the expected reduction 
in producer’s stock holding costs (green shaded area) in comparison with that in Chiu 
et al. (2013a) (in black lines).

Additional cost variables used in this study include: production setup cost K
i
 

(where i = 1, 2, … , L), unit holding cost h
i
, disposal cost C

Si
 per scrapped item, the 

fixed delivery cost K
1i
 for product i per delivery, and unit shipping cost C

Ti
 for each 

product i. Other parameters used in this paper are listed as follows:
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Fig. 1. On-hand inventory of perfect quality items in the proposed multi-product EPQ model under 
rotation cycle time policy

Fig. 2. Expected reduction in producer’s stock holding costs (in green) for each product i in the proposed 
model in comparison with Chiu et al.’s model (2013a)

T =  rotation cycle time - the decision variable,

t
i
 = time needed to produce enough items of product i to meet customer’s 

demand during uptime t
1i
,

t
1i
  =  production uptime for product i,

t
2i
  =  the delivery time for product i,

H
1i
 =  level of on-hand inventory in units of product i for meeting customer’s 

demand during uptime t
1i
,
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H
i
 =  maximum level of on-hand inventory of product i when the regular 

production ends,

n  =  number of fixed quantity installments of the finished lot to be delivered to 
customers in each cycle,

Q
i
  =  production lot size per cycle for product i,

t
ni
  =  fixed interval of time between each installment of finished product i being 

delivered during t
2i
,

I(t) =  on-hand inventory of perfect quality items at time t,

I
S
(t)

i
= on-hand inventory of scrap items for product i at time t,

TC(Q
i
) = total production-inventory-delivery cost per cycle for product i,

E[TCU(Q
L
)] = total expected production-inventory-delivery cost per unit time for 

L products in the proposed model under the rotation cycle time policy,

E[TCU(T)] = total expected production-inventory-delivery cost per unit time 
for L products in the proposed system using the rotation cycle time T as 
decision variable.

By observing from Figure 1, the following formulas can be directly obtained for 
any i = 1, 2, … , L:

1 2
i

i i
i

Q
T t t

λ
= + =

                                      
(1)

1 1i i i
i

i i i i

H t
t

P d P d

λ= =
− −                                  

(2)

1
1

i i i
i

i i i

Q H H
t

P P d

+= =
−                                     

(3)

2 1i i nit T t nt= − =                                      (4)

1 1i i iH tλ=                                          (5)

( )( )1i i i i iH P d t t= − −                                    (6)
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1

L

i
i

λ λ
=

=∑

                                          

(7)

Figure 3 illustrates on-hand inventory of scrap items in the proposed multi-product 
EPQ model under rotation cycle time policy. From Figure 2, the total scrap items of 
product i can be obtained as follows:

1i i i id t x Q=                                                         (8)

Fig. 3. On-hand inventory of scrap items in the proposed multi-product EPQ 
model under rotation cycle time policy

Total delivery cost for product i (i.e., n+1 shipments) in a given production cycle is

 ( ) 1 T1 i i in K C Q+ +                                    (9)

The variable holding costs for finished items of product i during delivery time t
2i
 

are as follows (Chiu et al., 2009):

2

1

2
i i i

n
h H t

n

−⎛ ⎞
⎜ ⎟⎝ ⎠                                                   

(10)

Total production-inventory-delivery cost per cycle for L products, consists of 
production setup cost, variable production cost, variable disposal cost, fixed and 
variable delivery cost, holding cost during production uptime t

1i
, and holding cost for 

finished goods kept during the delivery time t
2i
. Hence, total TC(Q

i
) for L products are
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( )
( ) ( )

( ) ( ) ( )

S 1 T

1 1
1 1 1 1 2

1

1

2 2 2 2

i i i i i i i i iL L

i i i i i
i i i i i i i i i

K C Q C x Q n K C Q

TC Q H H d t n
h t t t t H t

n
= =

+ + + + +⎧ ⎫
⎪ ⎪= ⎨ ⎬⎡ − ⎤⎛ ⎞+ + − + + ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

∑ ∑
       

(11)

The defective rate x is assumed to be a random variable with a known probability 
density function; hence, to take the randomness of x into account the expected value of 
x is used in this study. Substituting all variables from equations (1) to (10) in Eq. (11) 
and with further derivations the expected E[TCU(Q

L
 )] can be obtained as

( )
[ ] ( )

[ ]

1
S T

22
1

1

21 1 1 1 2
1

2 (1 )

ii
i i i i i i i

L

i i i i
i

i i i i i i

n KK
C C E x C

T T
E TCU T

hT

P P E x P n P

λ λ λ

λ λλ
λ

=

+⎧ ⎫
+ + + +⎪ ⎪

⎪ ⎪=⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤⎪ ⎪⎛ ⎞⎪ ⎪+ + + − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎪ ⎪− ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭

∑

  

(12)

Derivation of the optimal rotation cycle time

As stated earlier, the objective of this study is to determine the optimal rotation 
production cycle time to minimize the long-run average system cost per unit time (i.e., 
Eq. (12)). In order to obtain the optimal rotation cycle time T* one must first prove 
the existence of the minimum of the expected cost function E[TCU(T)]. Because the 
system cost has one decision variable, T, differentiating E[TCU(T)] with respect to T 
gives the first and the second derivative of E[TCU(T)] as

[ ]
( )

[ ]

1
2 2

22
1

1

( )

21 1 1 1 2
1

2 (1 )

ii

L

i i i i
i

i i i i i i

n KK

T TdE TCU T

hdT

P P E x P n P

λ λλ
λ

=

+⎧ ⎫
− −⎪ ⎪

⎪ ⎪= ⎨ ⎬⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤⎪ ⎪⎛ ⎞⎪ ⎪+ + + − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎪ ⎪− ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭

∑

     

(13)

[ ] ( )2
1

2 3
1

2 1( ) L
i i

i

K n Kd E TCU T

dT T=

⎧ ⎫+ +⎡ ⎤⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑
                           

(14)

The second-order derivative is positive because K
i
, n, K

1i
, and T are all positive. 

Thus, E[TCU(T)] is a convex function for all T different from zero. It follows that 
the optimal rotation production cycle time T* can be obtained by setting the first 
derivative of E[TCU(T)] as equal to zero:
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[ ]
( )

[ ]

1
2 2

22
1

1

( )
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1
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L
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P P E x P n P
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λ

=
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(15)

or

( ) [ ]

22

12
1 1 1

21 1 1 1 1 2
1 1

2 (1 )

L L
i i i

i i i
i i i i i i i i

h
K n K

T P P E x P n P

λ λλ
λ= =
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(16)

With further derivations one obtains

( )

[ ]

1
* 1

22

1

2 1

21 1 1 1 2
1

2 (1 )

L

i i
i

L
i i i

i
i i i i i i i

K n K
T

h
P P E x P n P

λ λλ
λ

=

=

+ +⎡ ⎤⎣ ⎦
=
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∑

∑
                

(17)

Effect of production setup time on the rotation cycle time

The production setup time is relatively short in general, when compared to the 
production uptime. However, if setup time becomes a factor, one has to check whether 
the production cycle length is long enough to account for the setup and production 
times of L products (Chiu et al., 2009). Let S

i
 denote production setup time for product 

i; Eq. (18) must hold in order to ensure that each cycle has sufficient time for the setup 
and production of L products.

( )
1

/  < 
L

i i ii
S Q P T

=
⎡ ⎤+⎣ ⎦∑                                     (18)

Substituting Eq. (1) in Eq. (18) gives

( )
1

min.

1
1 /

L

ii
L

i ii

S
T T

Pλ
=

=

> =
−
∑
∑                                   

(19)

Hence, if the setup time becomes a significant factor in production planning, one 
should choose the optimal rotation cycle time from max[T*, T

min
] (Chiu et al., 2009).

NUMERICAL EXAMPLES

In order to lessen comparison efforts for readers the same numerical example is used 
in this section as in Chiu et al. (2013a). Consider a production plan for making five 
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different products in turn on a single machine under a rotation cycle time policy. 
Assume that for product i = 1, 2, … , 5, respectively, the annual production rate P

i
 

is 58000, 59000, 60000, 61000, and 62000; the demand rate λ
i
 is 3000, 3200, 3400, 

3600, and 3800 per year; the random defective rate x
i
 during the production processes 

follows the uniform distribution over the intervals of [0, 0.05], [0, 010], [0, 0.15], [0, 
0.20], and [0, 0.25]; all defective items are not repairable; and the disposal cost C

Si
 is 

$20, $25, $30, $35, and $40. Other system variables used for product i = 1, 2, … , 5 
include the following:

K
i
 = the production setup costs are $3800, $3900, $4000, $4100, and $4200, 

respectively.

h
i
  = unit holding costs are $10, $15, $20, $25, and $30, respectively.

C
i
 = unit production costs are $80, $90, $100, $110, and $120, respectively.

K
1i 

= fixed costs per delivery are $1800, $1900, $2000, $2100, and $2200, 
respectively.

C
Ti 

= unit transportation costs are $0.10, $0.20, $0.30, $0.40, and $0.5, 
respectively.

n  = number of shipments per cycle; in this study, it is assumed to be a constant 
3 (i.e., n+1 = 4).

Applying Eq. (17) the optimal rotation cycle time T* = 0.7279 (years) can be 
obtained, and from computation of Eq. (12), one finds that the expected system 
cost for making L products E[TCU(T*)] = $2,097,903. The variation of the average 
defective rate of x

i
 effects on the expected system cost E[TCU(T)] and on various 

components of E[TCU(T*)] is illustrated in Figure 4. It is noted that, as average 
defective rate increases, the disposal cost (for the scrap items) and the expected system 
cost E[TCU(T*)] increases significantly. 

Fig. 4. Variation of average defective rate effects on the expected system cost 
E[TCU(T)] and on various components of E[TCU(T)]
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Fig. 5. Variation of rotation production cycle time T effects on the expected 
system cost E[TCU(T)]

Variation of rotation production cycle time T effects on the expected system cost 
E[TCU(T)] is depicted in Figure 5. The proposed model is aimed at reducing the 
producer’s inventory holding cost for each product i during the production cycle (see 
Figure 2). In this example, the total system cost savings are $15,291 or 3.89% of total 
other related costs (i.e., total system cost E[TCU(T)] excludes variable production 
cost λ

i
C

i
). A further analysis shows that the percentage of reduction of total holding 

cost is 16.7% (i.e., reduced from $98,906 [Chiu et al., 2013a] to $82,424; see Fig. 
6). Further analysis indicates that the relative reductions of inventory holding cost 
for each product are $429, $1,351, $2,776, $4,712, and $7,251; or 5.72%, 10.68%, 
14.78%, 18.19%, and 21.17%, respectively.

 In summary, through the aforementioned numerical example, significant savings 
in the vendor’s stock holding cost are demonstrated in our research result.

Fig. 6. Comparison of total inventory holding costs of the proposed n+1 
delivery policy with that in Chiu et al.’s model (2013a)
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An additional example to demonstrate the applicability of the proposed model is as 
follows. Suppose management of a manufacturing firm has different manufacturing 
process options for a multi-product production system, and associated with these 
options are different mean scrap rates over the interval of [0.03, 0.30]. Applying the 
research results obtained from the present study, the effects of various scrap rates on 
the optimal rotation cycle time T and on the expected system cost E[TCU(T)] can be 
determined and illustrated as in Figure 7. It is noted that as mean scrap rate increases, 
the optimal rotation cycle time T* decreases slightly, but the expected system cost 
E[TCU(T)] increases significantly.

In summary, through the aforementioned numerical example, effects of mean scrap 
rates on the optimal rotation cycle time and on the expected system cost can all be 
obtained by the use of results of the proposed study.

CONCLUDING REMARKS

With a primary intention of reducing the vendor’s inventory holding cost, this study 
extends the work of Chiu et al. (2013a) by incorporating an improved n + 1 multi-
delivery plan into their model. Mathematical modeling and optimization techniques 
are used to solve the proposed problem. As a result, the optimal rotation production 
cycle time that minimizes the long-run average system cost per unit time is derived. 
Through a numerical example, the practical usage of the obtained result is demonstrated 
(see Figures 4 and 5) and the significant savings in the vendor’s stock holding cost 
as compared to prior work (Chiu et al., 2013a) is confirmed (see Figures 2 and 6). In 
conclusion, the objective of lowering the vendor’s holding cost has been successfully 
accomplished. For future study, one interesting direction will be to consider the effect 
of stochastic demand rates on the optimal common cycle time.

Fig. 7. Effects of various scrap rates on the optimal rotation cycle time T* and 
on the expected system cost E[TCU(T)]
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