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ABSTRACT 

In this study, a multi-period technician routing and scheduling problem is addressed. The problem 
involves performing tasks at various locations by dividing them into teams of differently skilled technicians. 
Additionally, a bi-objective mixed-integer programming method is provided to model the problem as the goals of 
the model are to optimize the travel cost while simultaneously minimizing the overtime and waiting time. 
Furthermore, a fuzzy logic approach is introduced to solve the problem by offering a single Pareto solution to 
satisfy both objectives rather than providing efficient solutions, as in classical multi-objective models. Finally, 
computational experiments and analyses are presented to evaluate the efficiency of the proposed mathematical 
formulation and solution approach. The results demonstrate that the proposed model performed satisfactorily. 

Keywords: Bi-objective Optimization; Fuzzy Logic Approach; Multi-period; Technician Routing and 
Scheduling. 

 

INTRODUCTION 

The technician routing and scheduling problem (TRSP) is a fundamental challenge for many assistance 
providers, such as telecommunications, security personnel routing, home healthcare, and airline catering providers. 
These providers must effectively manage their limited workforce resources to address with this issue. The services 
provided by firms comprise different types of complicated tasks performed by technicians with various skills. In 
addition, technicians must visit diverse geographic areas to fulfill customer demands. The TRSP can be described 
as a branch of the vehicle routing problem, including time windows (Moradi, 2020). Therefore, it is an NP-hard 
problem (Pourjavad and Almehdawe, 2022). 

The primary aim of the TRSP is to separate technicians with different skills into teams, assign tasks with 
varying skill requirements to groups, and specify the routing for each team to optimize the sum of costs. However, 
tasks assigned to groups with different skill requirements must fulfill various constraints related to skill 
compatibility. Technicians with different individual skills should be incorporated with the scheduling and routing 
to accomplish a reasonable workload distribution, increase customer satisfaction, and diminish operational costs 
(Mathlouthi et al., 2021a). Accordingly, this study focuses on determining, routing, and assigning groups to satisfy 
customer demands for a given set of tasks that require different skills and a given set of technicians with varying 
skills over multiple periods or days. The TRSP addressed in this study considers a bi-objective mixed-integer 
programming (MIP) approach that optimizes travel costs, overtime, and waiting time. 
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In addition, this study considers a multi-period TRSP within a specific period, and overtime occurs when 
this time interval is exceeded. To solve this problem, a fuzzy logic approach that offers a single Pareto solution to 
satisfy both objectives is proposed, rather than providing Pareto-efficient solutions as in classical multi-objective 
models. 

Regarding the TRSP, Tsang and Voudouris (1997) were the first to research the technician workforce 
scheduling problem. Additionally, some authors have explored the technician scheduling problem in the 
telecommunications services offered by France Telecom (Dutot et al., 2006). While some authors considered a 
single period and time window (Cordeau et al., 2010), others considered a multi-period TRSP in different areas 
(Punyakum et al., 2022). The solution models can be categorized as exact methods (Mathlouthi et al., 2021b), 
heuristic models (Graf, 2022), metaheuristic methods (Pekel, 2022), and hybrid models (Xie et al., 2017), where 
the authors proposed a multi-period TRSP as an MIP model (Zamorano and Stolletz, 2017). Furthermore, the 
TRSP has been addressed via a metaheuristic-based approach using more than one team. To the best of our 
knowledge, a fuzzy logic method has not been investigated in the existing bi-objective TRSP with multi-period. 

The main motivation of this study was to conduct the planning process more effectively by modeling 
situations in which service times are uncertain in real life using fuzzy logic. 

The main contributions of this study can be summarized as follows: 

1. A bi-objective MIP approach is presented for the TRSP with multiple periods and team building as a bi-

objective model. 

2. A fuzzy-logic-based approach is proposed by obtaining a single Pareto solution to satisfy the travel cost, 

overtime, and waiting time requirements to determine the discussed problem. 

3. In this study, more than one team interaction is considered. 

The remainder of this paper is organized as follows. Section 2 introduces the definition and mathematical 
approach of the problem being addressed. Section 3 describes the proposed solution approach and an 
implementation sample. Section 4 presents a case study and its consequences in detail. Finally, Section 5 concludes 
the paper and presents future research directions. 

 

MATHEMATICAL MODEL 

The TRSP is a graph that consists of 𝐼 and 𝐴 sets and is defined as 𝐺(𝐼, 𝐴). Vertex set 𝐼 includes I' spread 
jobs and one dummy node (𝑜) designating the station; 𝐴 denotes the arc set. Team 𝑘 ∈ 𝐾 chooses teams of 
technicians	𝑚, 𝑛	 ∈ 𝑀 and completes the tasks. Each team 𝑘 begins to complete jobs and returns to the depot within 
the opening hours [𝑒, 𝑓] on each day	𝑑 ∈ 𝐷. Each arc 𝑖, 𝑗 ∈ 𝐴 relates a transportation time 𝑡89 and visiting cost 
𝑐89 that includes the service time 𝑝8 related to each task 𝑖	∈ 	𝐼<. In the proposed model, tasks 𝑖 and 𝑗 are not equal. 
Mastership level 𝑙 ∈ 𝐿 exists in skill requirement	𝑞	 ∈ 𝑄. Next, a solution provides a service plan for completing 
all tasks during the planning horizon. Each route begins and terminates at the central depot and includes the flow 
of jobs fulfilled by a group in a period. 

Each group utilizes precisely 𝛿 technicians, and	𝛿 = 2 is chosen considering the findings of Zamorano 
and Stolletz (2017). However, the mathematical model enables different values for	𝛿. Teams of technicians with 
other individual skills must meet the daily talent requirements of each task. If teams are overqualified, then the 
task is required and no cost is incurred. Team arrangements are not permitted during workdays. However, diverse 
team configurations are allowed on different days. A technician can only be in a group on the same day but can 
also be on different days. Table 1 displays the notation used in the mathematical model. The proposed 
mathematical model consists of two phases. Phase I describes the deterministic model, while Phase II represents 
the fuzzy model.  
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Table 1 Mathematical model notation. 

Sets  

𝐼<	 Tasks 

𝐼	 Tasks and central depot 

D Days 

𝐴	 Arcs 𝐴 ⊆ (𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝐼 

𝐷8 ⊆ 𝐷	 Authorized travel days of task 𝑖 

𝐴F ⊂ 𝐴	 Arcs 𝐴F ⊆ (𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝐼	and	𝐷8⋂𝐷9 

K Teams 

𝑀	 Technicians 

Q Skills 

Parameters  

[𝑎8F, 𝑏8F]	 The earliest and latest starting time window for task 𝑖 on day 𝑑 

𝑐89 Visiting cost between the locations of tasks 𝑖 and 𝑗 

𝑡89 Time distance between the locations of tasks 𝑖 and 𝑗 

[𝑒, 𝑓] Daily work hours 

δ Allowed number of technicians per team 

𝑣8O	 1 if task 𝑖 needs a mastership {0 or 1} on skill 𝑞; 0 otherwise 

𝑝8	 Service time of task 𝑖 

𝑔QO	 1 if technician 𝑚 has a mastership {0 or 1} on skill 𝑞; 0 otherwise  

𝜔STUV	 A customer waiting time cost unit 

𝑜𝑡STUV	 An overtime cost unit  

𝜔QWX	 Waiting time upper bound 

𝑜𝑡QWX	 Overtime upper bound 

Decision variables  

𝑥89ZF	 1 if team 𝑘 completes task 𝑖 and visits task 𝑗 on day 𝑑; 0 otherwise 

𝑦8ZF	 1 if team 𝑘 performs task 𝑖 on day 𝑑; 0 otherwise 

𝑧QZF	 1 if technician 𝑚 performs the task for team 𝑘 on day 𝑑; 0 otherwise 

𝑆8ZF	 Starting time of task 𝑖 performed by team 𝑘 on day 𝑑 

𝜔8	 Waiting time of task 𝑖 

𝑜𝑡ZF	 Overtime of team 𝑘 on day 𝑑 

 

𝑀𝑖𝑛							𝑧^ ≅ 	 𝑐89𝑥89ZF
F∈`Z∈a8,9 ∈b

																																																																																															(1)	

𝑀𝑖𝑛						𝑧d ≅ 𝜔STUV 𝜔8
8∈ef

+ 𝑜𝑡STUV 𝑜𝑡ZF
F∈`Z∈a

																																																																							(2)	
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Subject to 

𝑦8ZF
F∈`Z∈a

= 1						∀𝑖 ∈ 𝐼<																																																																																																																			(3)	

𝑥89ZF
98,9)∈bj

= 𝑦8ZF						∀𝑖 ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																																												(4)	

𝑥T9ZF
9:(T,9)∈bj

= 1							∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																																																													(5)	

𝑥8TZF
8:(8,T)∈bj

= 1					∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																																																																(6)	

𝑥8oZF
8:(8,o)∈bj

− 𝑥o9ZF
9: o,9 ∈bj

= 0						∀ℎ ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																															(7)	

𝑥89ZF 𝑆8ZF + 𝑡89 + 𝑝8 − 𝑆9ZF ≤ 0					∀𝑖, 𝑗: 𝑖, 𝑗 ∈ 𝐴F, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																					(8)	

𝑦8ZF 𝑎8F − 𝑠8ZF ≤ 0						∀𝑖 ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																																											(9)	

𝑦8ZF 𝑆8ZF − 𝑏8F − 𝜔8 ≤ 0											∀𝑖 ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																										(10)	

𝑥T9ZF 𝑆9ZF − 𝑒 − 𝑡T9 − 𝑝9 ≥ 0						∀𝑗 ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																					(11)	

𝑥8TZF 𝑆8ZF + 𝑡8T + 𝑝8 − 𝑓 − 𝑜𝑡ZF ≤ 0					∀𝑖 ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																									(12)	

𝑧QZF
Z∈a

≤ 1						∀𝑚 ∈ 𝑀, ∀𝑑 ∈ 𝐷																																																																																																			(13)	

𝑧QZF
Q∈y

= 𝛿							∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																																																																			(14)	

𝑣8O𝑦8ZF ≤ 𝑔QO𝑧QZF
Q∈y

						∀𝑖 ∈ 𝐼<, ∀𝑞 ∈ 𝑄, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																(15)	

0 ≤ 𝜔8 ≤ 𝜔QWX																																																																																																																																					(16)	

0 ≤ 𝑜𝑡ZF ≤ 𝑜𝑡QWX																																																																																																																																(17)	

𝑆8ZF ≥ 0						∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																																																																																	(18)	

𝑥89ZF, 𝑦8ZF, 𝑧QZF ∈ {0,1}							∀	 𝑖, 𝑗 ∈ 𝐴, ∀𝑚 ∈ 𝑀, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																																								(19)	

Equations (3) and (4) guarantee that each task is assigned once to a team on any feasible day of the 
inquired appointment days. Equations (5) and (6) guarantee that each team begins and completes its route at the 
depot. Equation (7) guarantees the flow of tasks when travelling on a task placed on a team or on a day. Equation 
(8) enables us to begin a task only if it is fulfilled. This constraint also avoids sub-tours. Equations (9) and (10) 
indicate that a task can begin only within its time window. When a team does not initiate a task until its latest 
starting time, the cost comes from customer waiting. Equations (8)–(12) are the non-linear constraints. However, 
a large M formulation can linearize constraints (8)–(12). Equations (11) and (12) determine the first and last 
fulfilment times, respectively: Equation (13) guarantees that one team can employ at most one technician per day, 
and the number of technicians in each team is denoted by equation (14). Equation (15) guarantees that a team 
composed of technicians with different skills must achieve task proficiency. Equations (16) and (17) define the 
lower and upper bounds of waiting time and overtime, respectively. Equations (18) and (19) provide the positive 
and binary variables, respectively. 
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METHODOLOGY 

This study considered a triangular distribution version to describe all fuzzy numbers. The essential benefit 
of a triangular fuzzy number (TFN) is that it provides plainness and flexibility in the fuzzy processes (Lai and 
Hwang, 1992; Rommelfanger, 1996). The decision maker can build a triangular distribution with three outstanding 
data points. The first data point is the most pessimistic value with a low probability related to the set of possible 
values, and its membership value is zero. The second data point is the most likely value and its membership value 
is unity. The third data point is the most optimistic value with a low probability related to the set of possible values, 
and its membership value is zero (Liang and Cheng, 2009). Figure 1 shows the distribution of TFN 𝑝8 =
(𝑝8

|, 	𝑝8Q, 	𝑝8T) under constraints (8), (11), and (12). 

Considering constraints (8), (11), and (12) from the original fuzzy mathematical model expressed earlier, 
we choose service time 	𝑝8 as a TFN consisting of the maximum and minimum possible values. This study 
implemented a weighted-average approach to transform 	𝑝8 into a crisp number (Liang and Cheng, 2009). In the 
case of the minimum acceptable membership level (∞), the crisp inequalities of constraints (8), (11), and (12) are 
modified as follows: 

𝑥89ZF 𝑆8ZF + 𝑐89 + (𝑤^𝑝8,∝
| + 𝑤d𝑝8,∝Q + 𝑤�𝑝8,∝T ) − 𝑆9ZF ≤ 0		∀𝑖, 𝑗: 𝑖, 𝑗 ∈ 𝐴F, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷					(20)	

𝑥T9ZF 𝑆9ZF − 𝑒 − 𝑐T9 − (𝑤^𝑝8,∝
| + 𝑤d𝑝8,∝Q + 𝑤�𝑝8,∝T ) ≥ 0			∀𝑗 ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷																								(21)	

𝑥8TZF 𝑆8ZF + 𝑐8T + (𝑤^𝑝8,∝
| + 𝑤d𝑝8,∝Q + 𝑤�𝑝8,∝T ) − 𝑓 − 𝑜𝑡ZF ≤ 0			∀𝑖 ∈ 𝐼<, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷											(22)	

where	𝑤^, 𝑤d, and 𝑤� show the corresponding weights of the most pessimistic, most likely, and most 
optimistic values, respectively; their sum is unity. In general, the experience and knowledge of decision makers 
determine their weights. Considering Liang and Cheng (2009), we chose weight values of 𝑤d = 4/6 and 𝑤^ =
𝑤� = 1/6 for all fuzzy restrictions. It is stated that the most probable value is commonly the most significant one; 
therefore, it should receive a greater weight. Conversely, the most pessimistic and optimistic values should have 
lower weights (Liang and Cheng, 2009). 

 

Figure 1 Distribution of TFN 𝑝8 

Following Liang and Cheng (2009), the continuous linear membership functions for each fuzzy objective 
are stated as follows: 

𝑓� 𝑧� = {1, 																												𝑧� ≤ 𝑧��e�
𝑧��e� − 𝑧�
𝑧��e� − 𝑧��e�

, 𝑧��e� < 𝑧� < 𝑧��e�0,

&																			𝑧� ≥ 𝑧��e�					𝑔 = 1,2																																																																										(23)	

where	𝑧��e� and 𝑧��e� are the positive ideal solution (PIS) and negative ideal solution (NIS), respectively, 
for the 𝑔𝑡ℎ objective function 𝑧�. PIS and NIS provide the lower and upper bounds 	𝑧��e�, 	𝑧��e� , respectively, for 
the solutions. Phase II of the proposed mathematical model is as follows: 

𝑀𝑎𝑥	𝐿	

𝐿	 ≤ 𝑓� 𝑧� 					∀𝑔																																																																												(24)	

0 ≤ 𝐿 ≤ 1																																																																																									(25)	
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Constraints (3)–(19) are added to the mathematical model, and the model runs for the linear membership 
function (𝐿). The found 𝐿 provides the values of all other objective functions. 

 

CASE STUDY AND NUMERICAL RESULTS 

Case Study 

Three fuzzy case studies for 25 tasks over five days were considered in this study. Twenty-five tasks were 
routed and performed by eight technicians. Different team configurations (𝑘 = 1,2) exist in a day. Team 
arrangements were not permitted during workdays. However, different team configurations were permitted on 
other days. One technician worked on at most one team per day. Members of the qualified team and all tasks had 
a given proficiency level (zero or unity). Teams of technicians with different skills must meet the talent 
requirements for each task. A customer waiting time cost unit and an overtime cost unit equal unity. 𝑜𝑡QWX = 0 
was chosen because teams did not require extra time to complete tasks in the case studies. The generated case 
studies have four different waiting times, namely, 𝜔QWX = 60, 120, 150, 𝑎𝑛𝑑	180 min. 

 

Figure 2 Case study example 

Figure 2 shows a case study example. As mentioned earlier, three case studies were considered. The three case 

studies consist of pessimistic 𝑝8
|, mean 𝑝8Q, and optimistic 𝑝8T values.		𝑝8Q is the service time crisp value. 𝑝8

|	𝑎𝑛𝑑	𝑝8T 

equal 90% and 110% of the service time crisp value, respectively. For example, if the service time in a deterministic 

model is 90 min, 𝑝8
| = 81, 𝑝8Q = 90, and 𝑝8T = 99. 

Numerical Results 

All procedures introduced in the previous sections were coded in C++, run on a 2.60-GHz workstation 
with 8 GB of RAM, and using the CPLEX 12.6 solver.  

First, the mathematical model was tested using data from Zamorano and Stolletz (2017). Single-and 
multi-period instances (25a and 25b) were solved, and solutions were provided according to different team 
numbers. The performance of the proposed algorithm was tested in a case study. We solved this problem twice by 
minimizing z1 and z2. Thus, the northwest and southeast points of the objective space were maintained, and the 
Phase II model was solved using these bounds. The results show that the proposed algorithm yields satisfactory 
solutions. To demonstrate the performance of the proposed algorithm, a further example is presented next. Table 
2 shows Results of phase I and phase II. 
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Table 2 Results of Phase I and Phase II (𝑤QWX = 60, combination=1) 

Phase I Phase II 

 z1 z2 z1 z2 F 

Min z1 490.40 1500.00 

 

First, the Phase I model is solved by minimizing 𝑧1 for the 𝑤QWX = 60 instance. The solution is 𝑧1 =
490.4 and 𝑧2 = 1500 (the northwest point of the objective space). Second, the Phase I model is solved by 
minimizing 𝑧2; the solution is 𝑧1 = 579.3 and	𝑧2 = 33 (the southeast point of the objective space). The z1 lower 
bound is determined by 𝑚𝑖𝑛	{490.4, 579.3} = 490.4, the z1 upper bound is determined by 𝑚𝑎𝑥	{490.4, 579.3} =
579.3, the z2 lower bound is determined by 𝑚𝑖𝑛{1500, 33} = 33, and the z2 upper bound is determined by 
𝑚𝑎𝑥	{1500, 33} = 1500. Using these bounds, the Phase II model can be solved by minimizing the F value. The 
solution is 𝑧1 = 492.4 and 𝑧2 = 66. Thus, the solution simultaneously satisfies both objectives. The decent 
solutions obtained for all cases are listed in Table 3.  

Table 3 Solutions of the case study for each 𝑤QWX values and team numbers. 

 

𝒘𝒎𝒂𝒙 = 𝟔𝟎	

𝑡𝑒𝑎𝑚 = 1	 𝑡𝑒𝑎𝑚 = 2	

𝑧1	 𝑧2	 𝐹	 𝑧1	 𝑧2	 𝐹	

Combination 1 

Infeasible 

492.40 66.00 0.977 

Combination 2 490.40 82.70 0.963 

Combination 3 490.40 93.90 0.961 

 

𝒘𝒎𝒂𝒙 = 𝟏𝟐𝟎	

𝑡𝑒𝑎𝑚 = 1	 𝑡𝑒𝑎𝑚 = 2	

𝑧1	 𝑧2	 𝐹	 𝑧1	 𝑧2	 𝐹	

Combination 1 

Infeasible 

487.60 125.60 0.968 

Combination 2 487.00 112.10 0.971 

Combination 3 487.60 142.50 0.964 

 

𝒘𝒎𝒂𝒙 = 𝟏𝟓𝟎	

𝑡𝑒𝑎𝑚 = 1	 𝑡𝑒𝑎𝑚 = 2	

𝑧1	 𝑧2	 𝐹	 𝑧1	 𝑧2	 𝐹	

Combination 1 332.90 3749.99 0.999 485.70 272.80 0.935 

Combination 2 327.70 3750.00 1.000 485.70 248.49 0.940 

Combination 3 333.10 3750.00 1.000 485.70 275.00 0.936 

 

𝒘𝒎𝒂𝒙 = 𝟏𝟖𝟎	

𝑡𝑒𝑎𝑚 = 1	 𝑡𝑒𝑎𝑚 = 2	

𝑧1	 𝑧2	 𝐹	 𝑧1	 𝑧2	 𝐹	

Combination 1 327.70 4496.98 0.999 487.00 216.97 0.958 

Combination 2 327.70 4496.94 0.999 487.00 212.66 0.958 

Combination 3 332.90 4499.99 0.999 490.40 93.90 0.889 
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The effects of the 𝑤QWX parameter is shown in Figure 3. The z2 objective is more sensitive in terms of 
parameter 𝑤QWX for all combinations. The 𝑤QWX value should be low. In addition, 𝑤QWX should also be positive to 
avoid unfeasible solutions. 

Table 4 Effects of team numbers and combinations. 

 z1 z2 

 team=1 team=2 team=1 team=2 

Combination 1 332.9 485.7 3750.0 272.8 

Combination 2 327.7 485.7 3750.0 248.5 

Combination 3 333.1 485.7 3750.0 275.0 

 

  

 

Figure 3 Effects of 𝑤QWX for all combinations. 

The effects of team numbers and combinations were also analyzed, and it was observed that there was no 
significant difference between combinations, but there was a significant difference between team numbers. As 
shown in Table 4, when the number of teams increased, the z2 objective values decreased, whereas the z1 objective 
values increased dramatically. If the number of teams increased from one to two, the average difference in z1 was 
approximately	31.8%; whereas z2 decreased by approximately 92.9%.  
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CONCLUSION 

In this study, a multi-period TRSP consisting of technicians with different skills and tasks requested by 
the customer at distinct locations is addressed by considering a bi-objective MIP approach, which indicates the 
trade-off between travel cost and the overtime and waiting time sum and considers a set of particular constraints 
to the TRSP. As a result, the bi-objective model allowed us to evaluate the multi-period TRSP based on time and 
cost. In addition, a fuzzy logic approach that presents a single Pareto solution to satisfy both objectives is proposed 
to overcome this problem. The bi-objective model introduced for the multi-period TRSP was used to investigate 
benchmark cases using the CPLEX solver. 

Computational tests were executed to analyze the performance of the proposed method for a given case 
study. First, the mathematical model was evaluated with real-world data, single- and multi-period instances were 
solved, and solutions were presented according to team numbers. Furthermore, solutions to a case study consisting 
of the conclusions of Phase I, the deterministic model, and Phase II, which is a fuzzy model, were offered 
considering different maximum waiting times and team numbers. The computational results and statistical analyses 
demonstrate that the proposed algorithm provides acceptable solutions. We examined the computational results 
for the team number and maximum waiting time separately, considering different combinations. It was found that 
the second objective is more sensitive to the maximum waiting time for all varieties. The first objective value 
increased and the second objective value decreased dramatically as the number of teams increased. In future work, 
it would be interesting to study other fuzzy logic models that could be used for comparison and obtain a more 
effective Pareto solution. Another potential development is to investigate situations in which the service time 
changes according to the technician’s experience. Because the problem considered is an NP-hard problem and it 
is impossible to obtain solutions, especially for large-sized customers, research can be carried out with 
metaheuristic algorithms, such as the genetic algorithm and particle swarm optimization. 
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