HaEn] Alind Alsva
& o0 o0 o0
e pally A3lal Slulyly .

CogSl ke — alall S pulons (56 yoiad

) ey
oS! Al s hasd /) piS |

2_Jg¥) susdl Huue
VAVY uli

] P29 PREF-3 1 ‘
| Ao Jod B AdpallJalll B Sl b :

;J'.}’j.: \o —lia 2 s T! M .-’.1
e L b 10 — 10 Olasgll ||

(e
i \|

_"':.!Q",l 1 "
e Fagy T Ol e il pusy) Sl pren 428
Tyl T04B0 s - jugll TE4A0 sy gl dualn - Gyl Una
YEAYIVLY 1 jusols YEALYAY L - YEATOVAA 150l
E.mail: jol@ku.edu.kw

http://www.pubcouncil. kuniv.edu.kw/jol =o,0¥1 aSd 2. Al (lgie
ISSN 1029 - 6069

Journal of Engg. Research Vol. 2 - (1) March 2014 pp. 95-120

s odenzell i 3 Fexcleusiond! 4l 45

B ole g™ 9 dud LlL)°
38 5oy o315 skisal ol J g ¢ bl Aralr (B laally JpraSOl ddin 5

LS5 odsdand [pinSanS = G Sl
o sSU 13060 (ilio (5969 L Gydis = 5 geaST) drikin o Al N.Lor._,s“

LM

sda L) u" L-exclusion)] ASis] it J= d_,'. r.u_, USRI RV u-"
4.1».;1(!>1) 3] mutual exclusion JI ASie] daans b 40 u-" A.l.im.d\
Jr).la-nug:_.._»(’-log((f+3))ﬂ,-] JT) dl> (14 3) (5,}1&\.&.’ il L.:uLlﬂ.:ﬁ" Caalitie
el s Sllaall U ey p Ol s o8 & [4log(8, x D] 3 Al %2 x Dy
D Jsl eda L JLai¥l il i lexclusion dob SIS o i)yl y>)
oo slaadl i Lol O 1 jdaedl slinaly Slleall e Lhonll 2253 p 0T S
b D 5e Aea sl el OF oy L3S AR Buzedl 6 et padeiy Vg ¢ ez
.J._vL’l.H J.uv_l'. r)uj‘) &;i.x:.:l Q.irg.ﬂ CLbJ O(fn/ﬂ X(l+D)) di S ci.!_,;; n Y
MI’("""_}'AJC&’”-&‘:‘JJI')’J‘Jl_):&”'|

Rachid Hadid and Mehmet Hakan Karaata 96

A stabilizing /-exclusion algorithm in arbitrary rooted
networks

RACHID HADID" AND MEHMET HAKAN KARAATA™

“Department of Computer Engineering and Architecture, Aydin University, Besyol
Mah.Inonu Cad. No:38 Sefakoy -Kucukcekmece|Istanbul, Turkish.

** Department of Computer Science and Department of Computer Eng P.0. Box 5969,
Safat 13060 Kuwait

ABSTRACT

In this paper, we present the first stabilizing solution to the l-exclusion problem in
arbitrary networks. The /-exclusion problem is a generalization of the mutual exclusion
problem to / ({ > 1) processes, where [processes instead of 1, are free to use a shared
resource simultaneously. The algorithm is semi-uniform, and its space requirement is
(I43)6, states (or[log((/+ 3)A,])) bits) for the root r and 4 x §2x D states (or
[4log(é, x D1]) bits) for each non root process p, where &, is the degree of process p and
D is the diameter of the communication network. This is the first -exclusion algorithm
on arbitrary networks with the property that the space requirement is independent of the
size of the network for any process, and is independent of / for all processes except the
root. The proposed protocol is distributed, deterministic, and does not use a pre-
constructed spanning tree. Since our algorithm is self-stabilizing, it does not require
initialization and withstands transient faults. The stabilization time of the algorithm is O
([n/] x (I+ D)) rounds, where n is the size of network.

Keywords: Distributed systems; fault-tolerance; self-stabilization; l-exclusion;
propagation of information with feedback.

97 A stabilizing l-exclusion algorithm in arbitrary rooted networks

INTRODUCTION

In 1974, Dijkstra introduced the property of self-stabilization in distributed
systems and applied it to algorithms for mutual exclusion (Dijkstra, 1974). Self-
stabilizing algorithms are able to withstand transient failures. We view a fault
that perturbs the state of the system but not the program as a transient fault.
The l-exclusion problem is a generalization of the well know mutual exclusion
problem where / processes are allowed to execute the critical section
concurrently. A generalization of the / -exclusion problem is known as the k-out-
of- I exclusion problem (Datta et al., 2003b,a, 2011) there are / units of the
shared resources, any process can request k (1 < k < /) of units of the shared
resources, and no resource unit is allocated to more than one process at one
time. The / -exclusion problem has several applications. The applications include
resource sharing systems with / identical shared physical resources to be shared.
In such a system, each process in a critical section may consume one unit power,
and only / units of power are available. Applications of the problem also include
congestion control and bandwidth allocation; again, a process in the critical
section has access to a fixed quota of bandwidth, and the total bandwidth
should not exceed a limit given by /. The problem was first defined and solved by
Fischer, Lynch, Burns and Borodin in a generalized test and set model (Fisher et
al., 1979). The problem of / -exclusion has been extensively studied, number of /
-exclusion algorithms are available in the literature (Afek et al., 1990; Dolev et
al., 1988; Fisher et al., 1979, 1989; Masum et al., 2010, Peterson, 1990).
However, to the best of our knowledge, the self-stabilizing / -exclusion
algorithms are limited to (Abraham et al., 2001; Antonoiu and Srimani, 2000;
Bernard et al., 2010; Flatebo et al., 1994; Gradinariu and Tixeuil, 2001; Hadid,
2002; Hadid and Villain, 2001; Villain, 1999). Dijkstras self-stabilizing solution
of the mutual exclusion problem (Dijkstra, 1974) was generalized in (Flatebo et
al., 1994). In that paper, the authors present a self-stabilizing / -exclusion
algorithm working in the state model and uses the token-ring communication
topology. The second self-stabilizing / -exclusion algorithm was published in
(Abraham et al., 1997, 2001), but unlike the first solution the algorithm utilizes a
set of single-writer multiple-reader regular registers as shared memory. In both
cases, the space requirement depends on the size of the network and L
Algorithms in (Flatebo et al., 1994; Abraham et al., 1997, 2001) require £2(n?/)
and O(2") states per process, respectively, where » is the size of the network.
Algorithm in (Abraham et al, 1997, 2001) also assumes a knowledge of /I
Algorithm (Antonoiu and Srimani, 2000) works on trees, uses the state model,
and requires O(Max?**!) states per process, where § is the degree of the network
and Max > [. First attempts to solve the [-exclusion problem in state model
with a space complexity independent of n (and almost independent of /) are
presented in (Villain, 1999) for rings and (Hadid, 2002) for trees. All those

Rachid Hadid and Mehmet Hakan Karaata 98

algorithms run in the state model (Flatebo et al., 1994; Hadid, 2002; Villain,
1999) or in the shared memory model (Abraham et al., 1997, 2001). The
algorithm in (Hadid and Villain, 2001) presents the first self-stabilizing /-
exclusion in message passing model in ring and tree networks. All those
algorithms are semi-uniform and deterministic. In (Gradinariu and Tixeuil,
2001), two randomized uniform solutions in unidirectional rings are presented
using state model. The first algorithm requires (/ x log(n)) states per process and
the second algorithm requires (/ x log?(n)) states per process. Recently, (Bernard
et al., 2010) proposed a random walk solution in message passing model in ad
hoc networks. The drawback of this kind of solution is that the waiting time of
process to enter the critical section is not bounded.

Contribution. In this paper, we present the first self-stabilizing /-exclusion
algorithm in arbitrary networks. The proposed algorithm uses a variant of the
well-known Propagation of Information with Feedback (PIF) scheme, called
Propagation of information with Feedback and Cleaning (PFC) introduced in
(Cournier et al., 2002). The proposed algorithm is token-based, i.e., a process
can enter its critical section only upon receipt of a token. In the proposed
algorithm, the token distribution is initiated by the root, where each process
distributes available tokens in the breadth first manner, i.e., tokens are passed to
different neighbors (provided that more than one neighbor exists) following a
local ordering. The proposed algorithm is an extension of the approach
introduced in (Hadid, 2000) to arbitrary networks. Although the proposed
solution has some similarities with our previous work, such as the use of tokens
and PFC scheme, the current work has many significant contributions. In the
current work, we do not assume a pre-constructed spanning tree using existing
solutions in the literature (Gartner, 2003). Instead, we use explore the token
distribution phase and dynamically constructing the spanning tree along with
this distribution. Thus, we do not need to wait the spanning tree construction to
start the token distribution. Also observe that, since we consider asynchronous
scheduler instead of a synchronous scheduler, while the tree is dynamically
constructed by the token distribution, some segment of the network may make
more progress in the token distribution than others. In addition, unlike in
synchronous systems where progress is made at synchronous steps, in our
asynchronous algorithm, progress is made whenever a guard is enabled without
having to wait for the next synchronous step. As a result, the token distribution
may not follow the shortest path in the network and the execution of our
algorithm on different networks, will lead to different trees. The space
requirement of our algorithm is (I + 3)é, states (or[log((/+ 3)6,]) bits) for the
root r, and 4 x 6§x D states (or [4log(é, x D]) bits) for any non root process p,
where 8, is the degree of process p and D is the diameter of the network. The
diameter of a network is the largest distance between any two nodes in the

99 A stabilizing l-exclusion algorithm in arbitrary rooted networks

network, where the distance between any two nodes is the minimum number of
hops between the nodes. This is the first /-exclusion algorithm on arbitrary
networks in which the space requirement is independent of the size of the network
for any process, and is independent of / for all processes except the root. Our
algorithm is self-stabilizing and its stabilization time is O ([n/l] x (D + 1))
rounds. In addition, the proposed algorithm adapts to topology changes in the
form of process/link failures and additions as long as the topology remains
connect and root process does not crash. So, upon a topology.

Outline of the paper. The rest of the paper is organized as follows. In Section 2,
we describe the distributed system, the model we use in this paper, and also,
state the specification of the problem solved in this paper. Then we present the
proposed algorithm in Section 3, and its correctness proof in Section 4. Finally,
we make some concluding remarks in Section 5.

PRELIMINARIES

Distributed System. We consider a distributed system as an arbitrary undirected
connected graph G = (V; E), where V is the set of nodes (| V] = n) and E is the
set of edges. Nodes of G represent processes, and edges of G represent
bidirectional communication links. Two nodes connected by a communications
link are said to be neighbors. We consider networks which are anonymous; i.e.,
no process, except the root (identified by r), has any identity. However, each
process uses an id to index each of its neighbors, where the id indicates the order
of the neighbor among the neighbors of the process. We consider networks
which are asynchronous: there are bounds neither on communication delays, nor
on process speeds. A communication link (p,q) exists if and only if p and ¢ are
neighbors. For convenience, we assume that each process p labels its links 1,
2,...,6p, where the labels of p are locally ordered by <, To simplify the
presentation, we refer to the link from p to ¢ (where q is one of the neighbors of

p) at p by simply g.

Programs. In our computation model, each process executes the same program
except the root. The distributed program of any process consists of a set of
locally shared variables (henceforth referred to as variables) and a finite set of
actions. A process can only write to its own variables. A process can read its
own variables and those owned by the neighboring processes. Each action is of
the following form: < label > :: < guard >— < statement >. The guard of an
action in the program of p is a boolean expression involving the variables of p
and its neighbors. The statement of an action of p updates one or more variables
of p. An action can be executed only if its guard evaluates to true. If a guard is
true, the corresponding action is said to enabled; disabled, otherwise. A process
is called enabled if it has at least one action enabled. If multiple actions at

Rachid Hadid and Mehmet Hakan Karaata 100

process are enabled at any time, an enabled action is selected non
deterministically and executed atomically. The state of a process is defined by
the values of its variables. The state of a system is a product of the states of all
processes (€ V). In the sequel, we refer to the state of a process and system as a
(local) state and configuration, respectively. Let C be the set of all possible
configurations of the system. Let a distributed protocol P be a collection of
binary transition relations denoted by —, on C. A computation of a protocol P
is a maximal sequence of configurations e = (vo, 1, .-, Vi, Yit1, ---), Such that for
i > 0,7 — v (called step) if ;. exists, else «y; is a terminal configuration. All
computations considered in this paper are assumed to be maximal. The set of all
possible computations of P in a system is denoted as E. We assume a weakly fair
and distributed daemon to simplify the presentation of the implementation of the
algorithm and its correctness. The weak fairness means that if a process p is
continuously enabled, then p will be eventually chosen by the daemon to execute
an action. The distributed daemon implies that during a computation step, if one
or more processes are enabled, the daemon chooses at least one (possibly more)
of these enabled processes to execute an action. In order to compute the time
complexity measure, we use the definition of rounds (Dolev et al., 1997). This
definition captures the execution rate of the slowest process in any computation.
Given a computation e (¢ € E), the first round of e (let us call it ¢) is the minimal
prefix of e containing one (local) atomic step of every continuously enabled
process from the first configuration. Let ¢” be the suffix of e, i.e., e = ¢’ ¢”. Then
the second round of e is the first round of ¢”, and so on.

Privilege. The definition of privilege to enter the critical section is the same as in
(Gouda and Haddix, 1996; Hadid, 2002): A process has the privilege "if and
only if it is enabled to make a particular move". The privileged action has the
mark PR. In this paper, a process is privileged if it holds a token.

Specification of the l-exclusion protocol. We consider a computation ¢ of P to
satisfy SPp of the protocol if the following conditions are true:

Safety. In any computation e, at most / processes can execute their critical
sections concurrently.

Fairness. In any computation e, each requesting process can enter the critical
section in a finite time.

Liveness. In any computation e, if k < [processes execute the critical section
forever and some other processes are requesting the critical section, then
eventually at least another process will enter the critical section.

Self-stabilizing I-exclusion Protocol. An [-exclusion algorithm is self-stabilizing if
every computation starting from an arbitrary initial configuration, eventually
satisfies the above safety, liveness, and fairness requirements. This specification

101 A stabilizing l-exclusion algorithm in arbitrary rooted networks

is referred to as high-level l-exclusion and the specification involving only safety
and fairness is referred as low-level l-exclusion. Analogous to all existing self-
stabilizing solutions to this problem in the literature, except (Gradinariu and
Tixeuil, 2001; Hadid and Villain, 2001), the proposed algorithm cannot ensure
that every computation of our algorithm always satisfies the liveness property
(i.e., low-level l-exclusion algorithm): some processors may have to wait for
others which are in their critical section, even if the total number of processors
in the critical section is less than /.

SELF-STABILIZING L -EXCLUSION ALGORITHM.

In this section, we present the stabilizing /-exclusion algorithm (Algorithm 3.1)
with 6, > 1 (the case of §, = 1 is a simple version of this algorithm).

Basis of the algorithm

The proposed algorithm works in two concurrent phases: the token distribution
phase where the root starts a wave to distribute / tokens down the network, and
the PIF synchronization phase which cleans the trace of the token distribution
phase so that the root is subsequently ready to initiate a new token distribution
phase. These two phases are launched by the root alternately and carried out
concurrently. After the root distributes all / tokens then it can start the PIF
phase to clean up the network from the distributed tokens. The clean up phase
(PIF) follows but does not meet the token distribution phase, and the token
distribution phase terminates before the PIF phase. The goal of the token
distribution phase is twofold: first, / tokens are distributed to the network using
a wave in a fair manner and second, a spanning tree rooted at the root of the
network is constructed. The token distribution phase is initiated by the root
process by distributing / tokens to its neighbors, one at a time, in order. If some
tokens remain after distributing a token to each neighboring process, the root
continues to distribute tokens again starting from the first neighbor. This is
repeated until all the tokens are distributed. Upon receipt of a token, each
process assumes the sender to be its parent and forwards the token to the next
neighboring process (based on its local order of neighbors) that has not been
included in the tree, if such process exists. To determine the next neighboring
process, each process keeps track of where it sent the last token using a pointer
that circularly advances after sending each token. If a process fails to find a
neighbor that has not been included in the tree and it does not have a child, then
the process destroys its token and becomes a leaf in the tree. On the other hand,
if it fails to find a neighbor that has not been included in the tree, but has one or
more children, it sends the token to its next child. The root always sends its
token to the next process based on its local order of neighbors even if this

Rachid Hadid and Mehmet Hakan Karaata 102

process is already a child of a non-root process. So, this process accepts the
token from the root and consequently becomes its child. Since during the token
distribution phase every process records the process from which it receives a
token as its parent, a tree rooted at the root is gradually built. We should note
that many token distribution phases may be necessary to complete the
construction of the tree, since every process joins the tree after receiving a token
and one phase may be not sufficient to reach all the processes of the system.
However, after the construction of the complete spanning tree, each process
distributes its tokens only among its children. After all / tokens are distributed,
the PIF synchronization phase is initiated by the root process to clean up the
network between two consecutive token distributed phases. The PIF is carried
out only on the spanning tree built by the token distrib.

Algorithm 3.1 Self-Stabilizing {-Exclusion Algorithm
Input Np: set of (locally) ordered neighbors;
D=n-=1;
Constants For the root Ly=0; P, =p;
Variables For the root Tp € {0,1,..,6— LR, B.C}: 5p € {1,....0,}:
For the non root Ty € {Tok.C. B, I} Sy, Py {1, ..0p} Lp 1 O, D

Macro
Potential, = (e NpuTae{Tok 0,1, E—-1}AS;=pAP#pAl, < D}
Child,, = {geN, =P =p}
PotChildy, = {qENpuPy=1}
r il {r € Potentialy)
Parp = Pp il (Pp € Potentialy)
min, (Potentialy) otherwise
min <, (V) if {(p=r)
Nexty = { min<g, (Childp U PotChildy) if (p # r) A (Childp U PotChildy #)
L Otherwise
Actions
For the root node
Predicates
1st Token(p) = (h=C)AMGeEN, =Ty =C)
TthToken(p) = (T e{0...0—2DA(Sp=q=Tg=Tok) A (Tnert, =C)
Rcady-To-Broadeast(p) = (T, =(-1)A(Yge Np Ty e{Tok.C})A(Sy =q= T, =Tok)
Breadeast(p) = (THh=RMANVgeEN, uTy=0C)
Cleaning(p) = (Tp=B)AMgeNguTy=T)
(@y) 2 1stToken(p) — 5= Nextp; T, :=0: (PR) /* Token distribution and Cleaning */
(a2) :: TthT oken(p) = Sy :=Nexip; Tp:=Tp + 1: (PR}

{a3) = Ready-To-Broadeast(p) — Tp:=HR;
{ay) i+ Broadcast(p) - Tp:=8 /* PIF Synchromzation */
(az) :: Cleaning(p) - T.:=C;

For other nodes

Predicates
Normal(p) = ((FB==2FP A lp=L4+ A (Tp=B=>Ty=B)A(Tp=F=>T, €
{B.F,CYA(Tp=Tok =T € {Tok.0.1....Ee - LLRCI)A{Pp=L) = (T, =C))

Token(p) = (Tp =C)ANormal(p) A (Potentialp # 8) A (Nexty =g =Ty =C)
Broadeast(p) = (Pp #L) A (Tp = C) A Normal(p) A (Tp, = B) n (Vg € Childy = T, = C)
Feedback(p) = (Tp = B) A Normal(p) A (¥g € Childy = Childg = F)

Cleaning(p) Normal(p) A (Tp = F = Tp, € {F.C})A(T, =Tok = ((Sp, =p=Tp, € {R,ChHr

(Sp=9= (Tg =Tok v Ly = D))

AbnPath(p) = - Normallp) MPp=q= (P =L)v(Lp # Lg+ 1))
AbnPif(p) = = Normal(p) A(Pp=gq= (P £L)A(Lp = Lg+ 1))
{ag) : Token(p) — Sp:= Nexty; Tp:=Tok; /*Token distribution*/
P i= Parg; Ly := Lp, + 1:(PR)
(a7) = Broadeast(p) — Tp:=B8: /*PIF Synchronization and Token Clean®/
{ag) :: Feedback(p) — Tp:=F;
(ag) :: Cleaning(p) = Tpi=C
{a10) = AbnPath(p) — =L /*Correction action*/
(ayy) = Abnlif(p) -+ Ty:=0C

103 A stabilizing l-exclusion algorithm in arbitrary rooted networks

When the root receives feedback from all its children, it knows that the tree is
cleaned up from the previous tokens and starts a new token distribution phase.
The repetition of token distribution in this manner ensures that every process
will receive a token (fairness) and the complete spanning tree of the network is
eventually built. The safety is clearly obtained from the fact that the token
distribution starts only after cleaning the tree from the preceding tokens and the
root distributes exactly / tokens in the tree. The self-stabilizing / -exclusion
algorithm is shown in Algorithm 3.1.

The token distribution phase is implemented using the privileged actions a;,
a,, and ag, which are marked as “(PR)”. So p is privileged or has a token iff one
of the following conditions holds: p is the root (p = r) and a; or a; is enabled, or
p is non-root process and as is enabled. The cleanup process (PIF) is
implemented using actions a, and as for the root, and a;, as and ay for other
processes. Before describing the two phases of our algorithm in detail, we first
introduce the variables maintained by each process p.

e T, is used to implement both the token passing mechanism and the PIF
synchronization. T, € {0, ..., I-1, B,C,R} for the root process and T, €
{Tok,B,C,R} for a non-root process.

e S, denotes the neighbor to which p sent its last token.

e P, denotes the parent of p. If there exists a neighbor of ¢ (g€ Np) such that
P, = g, then q is said to be the parent of process p and p is said to be a child
of g. If a process p is not a parent of any process then process p is said to be a
leaf or terminus process. Otherwise, p is said to be an internal process. Since
the root never receives any token from any of its neighbors, it does not need
to maintain P,. So, we show this variable as a constant in the root’s
algorithm.

e L, denotes the length of the path followed by the token from the root p.
Again, since the root never receives any token from any of its neighbors, L,
must be 0, and hence, is shown as a constant in the algorithm.

Token Distribution. As explained above, during the token distribution phase, the
root process sends a wave containing / tokens to its neighbors and each token
sent follows a path from root r until it reaches the terminus of the path (a leaf
process) where it disappears. Moreover, a spanning tree rooted at r is built
during the token passing process. A switch mechanism is used during the token
distribution to ensure that every process gets a token infinitely often. The switch
mechanism is maintained at every process and implemented using a macro (not a
variable but a dynamically evaluated function) Next, to identify, using the

Rachid Hadid and Mehmet Hakan Karaata 104

pointer variable S,, the next neighbor to be visited by the token. For any
process p, Next, returns the id of its next neighbor that has not been included in
the tree, if such a neighbor exists. Otherwise, it returns the id of the next child
among its ordered set of children, if exists; otherwise, i.e., p does not have
neighbor not included in the tree nor a child, p destroys the token since it is a
leaf. However, before process p identifies its parent, multiple processes (called
potential parents) may simultaneously send their tokens to p. Then, among all
these potential parents, if the root is also a potential parent of p, then p chooses
to receive the token from the root process; otherwise, p chooses the neighboring
process with the smallest link number (Macros Par, and Potential,). The T
variable of the root process 7, is in state C before participating in the next token
distribution phase. Subsequently, the root uses the successive values 0, ..., I-1 of
the variable 7, to differentiate the distribution of its / tokens. A non-root
process g receives a token when the following conditions hold: the T, variable of
process g is in state C; one of the neighbors p of process g, such that 7, = Tok
(or € {0,... , I-1} if p is root) holds, has selected g as its potential child by
assigning g to its S, variable; and the T variable of next process to receive the
token from process g, if such a process exists, is equal to C. When a leafl process
assigns Tok to its T variable, token propagation ends and the trace of this token
propagation (values in T variables) are cleaned by the following PIF wave.
Whenever the root or an internal process p receives a token, it selects the next
neighbor (say ¢) to receive the token by advancing its pointer variable S, to g.
The token is passed by the root to one of its neighbors by executing either action
a; (for the first token) or a; (for the second through the /-th token). The token is
received by a non-root process by executing a;. When a process ¢ discovers that
its parent or one or many neighboring potential parents are sending their tokens
to it and if ¢ has not chosen a parent yet, then g is involved in this phase as
follows (ag):

(i) If g has no parent, then it chooses its parent p by assigning the link number
associated with p to its variable P, (consequently, ¢ becomes a child of p).
This leads to process g joining the tree rooted at r.

(1) decides its level by assigning L, + / to its variable L,

(1ii) selects the next process (if any) by advancing S, to the next neighbor (using
Next,) in its ordered sequence of neighbors to determine the recipient of
the new token. If ¢ fails to find a neighbor to transmit its token to, then it
destroys the token and becomes leaf process in the tree, and

(iv) g passes its token by changing its T value to Tok. When p uses the token by

105 A stabilizing l-exclusion algorithm in arbitrary rooted networks

executing as, p cleans the trace of this token (Tok value) with a C value
(action ag). Then p becomes ready either to receive another token of the
same cycle or to execute the next phase (PIF synchronization phase). The
root cleans the trace of this token (for the 0 to /-2 tokens) with the next
token number (a;) or a R value (for the (I-1)" token) (aj).

PIF Synchronization. After root sends its /-th token and before starting the
distribution of a fresh wave of / tokens, it must be sure that the tree built during
the preceding phases is cleaned up from tokens of the previous wave, i.e., all the
distributed tokens are consumed and disappeared at the leaves. This is done by
setting the T variable of every process in the tree to a C (Cleaning) value. The
cleanup process is implemented using the PIF scheme. To implement this phase we
specifically use the PFC introduced in (Cournier et al., 2002). This scheme requires
some additional values and variables. T, = B and T, = F refers to the broadcast
and feedback state, respectively. The root uses another additional value R of T, to
represent the ready to synchronize state. The root is in the ready to synchronize
state before it initiates the PFC. After the root sends its last token (the /-th token),
it sets its T variable to R (Ready to synchronize) to indicate to its children to be
ready for a new PFC (action aj). Subsequently, all its children alter their T
variables to C (action ag). Then, the root starts a new PFC by switching its T,
variable to B (a,). When process pe V{-r} with T, = C discovers that the T
variable of its parent process has been set to B, then p participates in the broadcast
phase and changes its 7, variable to B (a;). When the broadcast phase reaches a
leaf process, the leaf process knows that all its ancestors have entered the
broadcast phase. The leaf process then starts the feedback phase by assigning F to
its T variable (az). The feedback phase propagates towards the root in a bottom-up
manner as follows. Each internal process p which finds all its children in state F,
participates in the feedback phase by assigning F to its 7" variable (also ag).
Eventually, the feedback phase reaches root r. Every process p in the tree initiates
the cleaning phase by setting its 7, value to C when each of its children and its
parent q is either in the feedback phase (7, = F) or in the cleaning phase (7, = C)
(action ag). The purpose of the cleaning phase is to clean the trace of the preceding
PFC phase. The cleaning phase works in parallel and pursues the feedback phase.
Once all the children of the root enter the feedback phase, root participates in the
cleaning phase (action as) causing the system to enter the next phase of the
algorithm and start a new /~tokens distribution. Thus, the PFC wave works in
parallel and follows the token distribution phase. The PFC wave should not be
allowed to meet any token, i.e., the PFC wave cannot interfere with the token
distribution phase. We implement this constraint as follows. A process p can
change the value of its 7, variable only if it has the value of its Tp variable set to
C, all the children of process p have their 7, variable set to C, and the parent P, of
process p has its T, variable set to B (see action a;).

Rachid Hadid and Mehmet Hakan Karaata 106

Illustrative example

We now describe the behavior of the algorithm using Figure 3.1 and we consider
a situation of 3-exclusion. For simplicity, we assume that the tree is not built,
i.e., P variables are sited to L, and all processes are in the cleaning phase, i.e., T
values are sited to C.

The initial configuration is shown in Part (i) where the root is ready to launch
the token distribution phase. In Part (if), r chooses the neighbor a to receive its
first token (Macro Next,), sets its T, variable to 0, and points its S, value to the
link number associated to process a. During its turn, a sends the received token
to its neighbor e (thus causing process e to take process a as its parent), sets its
T, value to Tok, and points its S, value to the link number associated to e (Part
(iif)). Next, the root, seeing that a received the token it sent, sends the second
token to b, while e sends the token to its neighbor i and sets T, to Tok (Part (iv)).
Now both i and b hold a token. Process b sends its token to fand sets T}, to Tok.
However, process i destroys its token since it is a leaf process (Part (v)). During
this step, a changes T, to C (i.e., cleans the trace of the token) to be ready to
receive another token or participate in the PIF phase. In Part (vi), the root,
seeing that b received the token it sent, sends its last token to ¢, while f destroys
the token it receives from b and sets T, to Tok. During this step, e changes T, to
C (i.e., cleans the trace of the token). Next, ¢ sends its token to g and sets its T
variable to Tok (Part (vii)). During this step, both i and & change their T variable
to C and clean the trace of the token).

Note that in a 4-exclusion algorithm, the root would have a fourth token to
send to its next neighbor before initiating the PIF wave and since T; = C, the
root could send this last token to d.

107 A stabilizing l-exclusion algorithm in arbitrary rooted networks

. P @ 7> =8 (Broackas)
T =@L2..0-1} (@ Tp=R (Rexytoinibiatethe

(ifpis the root) Synchronzing PIF) ’Tg =F (Feedback)
. Tp=Tok | Tp=F (Cleaning)
(ufpis‘anot the root) A e P
5 el - ¥k
! v kS
d ~ d ¢ o . Y d
a ; 7c a er ar, el e
e b 5 ‘B ¢ b2 K e L.20 roe, . b n
; i § SN . e
f .
] - 9 , .
! L K g N Oy T g g () T g e
U} (i) K () v
r r r 1
A Ao L3 e O
a c -’l" I3 a’, oy afy ¥ '\‘
1 ! ! ; TR s
e e N . hooe 5:” nooe AL "
‘r 2 ‘r < 1‘ ; g . ‘f.-_ ! £ ;r P
S j ko1 ; S k= ¥ £ i k :' f T k !
o () (wif) (i)
r r 7 :
Q.. & ., & . &
ary e af (.' \ ‘ a Foeny np ey
: X o % f \ \
& Vb " o L h o o b " . ob A 4
R I RN 1T 1y g/ g i) 20§
i Tk T S L Ry " .
7 Pt S p J ke }f--'j :ff‘rl,g Sk
fix} x (xi) (i)
v . ' .
s o T o N o P g s
cr % ‘e ! e A ¢ S
P LX . L 0/ @
eo ?bg-\ [99 Q‘).bg P g@ : bg*,_',', e q’bg. A
T O @, DG o, Y OO &, o 0
i 2 J f i J
ity)) fod)
r r , -
a 'g‘ 4 a 5) ""?\ od TR Sy
¢ i ie a Pl Lo a P
Q: . L@ Y . G . . Loty
L) LI 4 ey 1 h ey - b I
; i gﬂ WL g” ¥ Y 1 - [L
v . \ i N 1%, - ‘ in A
p .f‘ LA ¢ T LA Oy T Sgidend (O T SN
(A1) (adil) {dx) (00

Fig. 3.1. An example showing the normal execution of the Algorithm

However, since we dealing with 3-exclusion in this example, and the root has
sent its third token, the root now initiates a PIF wave to clean up the tree from
the tokens and decide when it can start a new distribution of tokens. Hence, r
changes its T value to R (Part (viii)). This enables all its children to change their
T values to C. During this step, f changes Ty to C (i.e., cleans the trace of the
token) and process g sends its token to j and sets T, to Tok. Then, ¢ changes its
T. to C (Part (ix)). In Part (x), all the children of the root have changed to C.
Then, r initiates the PIF wave. The PIF wave should not be allowed to meet any
token, i.e, processes with T equal to B must not be allowed to confuse the
processes with T equal to Tok. In other words, the PIF wave cannot disturb the
forwarding of the tokens. We implement this constraint as follows: A process p

Rachid Hadid and Mehmet Hakan Karaata 108

can change 7, to B only if T, has a value C, all of its children have the C value,
and P, has the value B. This is shown in Part (x). processes a and b change the
value of their T, variable to B, whereas process ¢ changes the value of it T,
variable to B only after g changes its T, variable to C. Eventually, the broadcast
of the PIF wave reaches the leaf processes. In the next step, the leaf processes
can initiate the feedback phase. This is shown in Part (xii). The leaf process f
initiates the feedback phase (changes to F), and in Part (xiii), i also initiates the
feedback phase. Now, any internal process can change its 7 value to F (so,
participates in the feedback phase) as soon as all its children have changed their
T values to F (i.e., have completed the feedback phase) and its parent has
changed its T variable to B (Part (xii) and (xvi)). Next, every process can clean
its T value (Part (xiv) and (xv)). So, the feedback and cleaning phase can run
concurrently (Part (xv)). All we have to make sure is that the cleaning phase
does not meet the broadcast phase, i.e., the processes in the cleaning phase do
not confuse the processes in the broadcast phase. We implement this constraint
as follows: An internal process p can change its T value from F to C only if all
its neighbors in the tree are in the feedback or cleaning phase (i.e., has their T
values € {F; C}). When the feedback phase reaches all the children of the root,
the root terminates the feedback phase and changes its T value to C. Now, all its
children can change their T value to C. So, the root will remain locked until all
its children change to C. This configuration is equivalent to Part (7). This marks
the end of the current cycle and the start of the next cycle. As the system is
asynchronous, the processes may not change their states at the same time. We
need to make sure that the forwarding of the tokens of the next cycle does not
confuse the processes in the feedback phase. The root (resp., an internal process)
can initiate the next cycle (resp., can participate to the token distribution) only if
all its children change from Fto C (Part (xv)).

Error Correction.

During normal behavior, all system processes must preserve some properties
based on the value of their variables and those of their parents. For each non-
root process p, the following properties need to be maintained (see Figure 3.2).

7
P P < £
f AT e el
_AABF.C || A TokCY /,f'.r‘;:, f/<
r 9 4 ’ ‘JA}\ ,%C_n"\
B Tok (). 7 Tok iy ©-
AT . et]l

Fig. 3.2. An example showing the process’s normal states

109 A stabilizing l-exclusion algorithm in arbitrary rooted networks

(1) For each process p which has already chosen its parent (i.e., P, = ¢), the
following properties need to be maintained.

(a) The parent g of p has also chosen its parent, i.e., P, # L.
(b) The distance L, of process p is one plus that of the parent, i.e., L, = Lg + 1.

(c) If a process p is in the broadcast phase, then its parent g is also in the
broadcast phase.

(d) If a process p is in the feedback phase, then its parent g is either in the
broadcast, cleaning, or feedback phase.

(e) If a process p is in a token distribution phase (i.e., T, = Tok), then its
parent g is either in the token distribution phase, cleaning phase, or ready
to synchronize phase if g is the root process; token distributed phase or
cleaning phase if g is non-root process.

(2) Each process p which has not yet chosen its parent (i.e., P, =1)isin a
cleaning phase.

A process conforming to the above conditions is said to be in a normal state
(Predicate Normal(p)). Otherwise, it is said to be in an abnormal state
(Predicates AbnPath(p) and AbnPif(p)). For satisfying these properties, the
correction actions a;y and a;; (Algorithm 3.1) are used. The correction action
a;p is used when property 1 holds for process p while one (or both) of the
properties (a) and (b) does not hold. However, action all is used when either
property 1 holds for p and one (or more) of the properties (c), (d) or (e) does not
hold, or property 1 does not hold for p and p is not in a cleaning phase (i.c.,
property 2 does not hold for p).

PROOF OF CORRECTNESS

We are to show that starting in any arbitrary system configuration, the
proposed algorithm implements a stabilizing /-exclusion algorithm (Theorem
4.5). We first show that the proposed protocol is guaranteed to eventually enter
a normal system configuration in which no process exists in an abnormal state
(Theorem 4.1). Then, we show that the root starts the token distribution and the
PIF phases infinitely often (Lemma 4.10). The repetition of the token
distribution phase in a fair manner ensures that every process will get a token
(fairness) (Theorem 4.3) and the complete spanning tree of the network is
eventually completed (Lemma 4.11). The safety is clearly obtained from the fact
that the token distribution starts only after cleaning the tree from the tokens
and the root distributes exactly | tokens in the tree (Theorem 4.2).

We need the following definitions to facilitate the remainder of the proof of

Rachid Hadid and Mehmet Hakan Karaata 110

correctness. A path p,, is a sequence p = py, pa,..., pr = q such that (i) k> 2,
(ii)¥Vi,1 < i< k, Ppiy = pi, (iii) p; = r or P,y =1. Process p;,
¥, 1 <i<k, P,y =P is said to belong to a path u,, and is denoted as
Pi € ppqg- The length of the path pu,, is denoted by Ii,g. If p; = r the py, is called a
routed path; a non-routed path otherwise. Let (T,~,, T,...., Tp,=q) denote a
state sequence of a maximal path of processes p = p;, pa,..., px = ¢, such that
process p; is the parent of process p,, process p; is the parent of p; and so on, in
configuration v. A subsequence T,T, of length two of a state sequence is
referred to as abnormal state pair if process ¢ is in an abnormal state and process
p is the parent of process g; a normal state pair, if q is in normal state. Based on
the definition of normal and abnormal process, observe that a state pair 7,7, is
an abnormal state pair iff P, = L, or L,# L, + 1, or T, T, € {BTok, FTok, FB,
xB, xF, CB}, where x€ {Tok, R, 0, 1,...., I-1}. A state pair T,,T, is a normal state
pairiff P.ot 1, L L, + I, and T,,T, € {BC, BB, BF, FC; FF, CF, yTok, yC},
where y = xU{C}. A state sequence (Tp=po, Tp=p1..... Tpr=) is referred to as
abnormal sequence state if it contains an abnormal state pair. For any process p,
we define a set Tree(p) of processes as follows: For any process ¢, g € Tree(p) i
p is the terminus of u(pg). We denote the height of Tree(p) by h(Tree(p)).

Removal of abnormal state

In this section we establish that each abnormal state sequence eventually
disappears. In our algorithm, actions a;, and a;; are used to remove the
abnormal state pairs.

Lemma 4.1. For every process p, if P, = q holds, then L, = L, + 1 or P, =1
holds in at most one round.

Proof. Let p be a process such that P, = g and L,# L, + I. Then in at most
one round p executes a;g sets its P, = L.

Lemma 4.2. Starting from any configuration, every non-routed path disappears in
at most D rounds.

Proof. Let p,q = pi,p2, ..., px be a non-routed path, i.e., p;7# r. We show this
result by induction on 7i,,.

Basic Step. Let fi,; = 1. So, ptpy = p1,p2. Then, in at most one round p; executes
a;p and sets its Pp; to L as the result follows.

Induction Step: Assume that the result is true for T,y <k -1, for k >1.
Consider the case where fi,, = k. By induction hypothesis, fi,; = p1,p2, .-, Pk—1
disappears in at most k - 2 rounds, i.e., V;, I < i < k-1, P,; = L holds after at
most k - 2 rounds. Then, in at most one round process p; executes a;y and sets
its P, to L. Since the length of the path s, is bounded by D the result follows.

Lemma 4.3. For every process p, if P, = L then T, = C holds in at most one round.

111 A stabilizing l-exclusion algorithm in arbitrary rooted networks

Proof. Let p be a process such that P, = L and T,# C. Then in at most one
round p executes a;; and sets its T, = C.

Lemma 4.4 Starting in any arbitrary system configuration, no state sequence
contains an abnormal state pair in the set {BTok, FTok, FB, xB, xF} (where x €
{T,, R, 0, 1,..., -1}) in at most one round.

Proof. Let Tp,T), be a state pair such that Tp,T,€ {BTok, FTok, FB, xB, xF} (x
€ {Tok, R, 0,1,...,1I-1}). As = Normal(p) holds for process p, process p executes
a;; and changes its T value to C in at most one round. Then, immediately after
process p changes its T value to C, Tp,T,€ {BC, FC, FC, xC} holds. Observe
that when process P, or process p in state pair Tp,T, ¢ {BT,, FTok, FB, xB,
xF} executes an action, no state pair in set {BTok, FTok, FB, xB, xF} (x €
{Tok, R, 0, 1,, I-1}) is created.

Lemma 4.5 Starting in any arbitrary system configuration, no state sequence
contains the abnormal state pair CB in at most D rounds.

Proof. Let 7p,T, be a state pair such that Tp,7, = CB. Notice that since
—Normal(p) holds for process p, process p executes a;; and changes its T value
to C in at most one round. If Child, =¢, then the abnormal state pair
disappears and the result follows. Otherwise, let g be a process such that g €
Child,. From Lemma 4.4, T,T,€ {BC, BB, BF}. Let ;_1—; be a computation
step in a round, such that in this step, process p executes a;;. It is clear that the
abnormal state pair Tp,T, becomes normal immediately after process p executes
a;; and changes its T value to C. Then, two cases are possible: either the
abnormal state pair disappears from the system or another abnormal state pair
(i.e. T,T,) is formed after the execution of action all.

1. We consider the case where the state pair T,T, remains normal state pair in
v;. It is easy to see that immediately after the computation step ~v,_1, — i,
process g becomes normal. Hence, Tp,7, = CC and T,T,c {CC, CF}.
Thus, the abnormal state disappears in one round.

2. We consider the case where the state pair 7,7, becomes abnormal state
pair in ~; when process p assigns C to its T value by executing action ay;.
Notice that immediately after the computation step 7;_,— =i, process p
becomes normal, whereas process g becomes abnormal. Hence, 75,7, =
CC and Tp,T, = CB. Therefore, the abnormal state pair Tp,7, becomes
normal state pair and the normal state pair 7,7, becomes abnormal state
pair. Consequently, the path distance of the abnormal state pair sequence
increases by one after this computation step ~;_ 1, —;.

Since the path distance of abnormal state sequence is bounded by D, the
result follows by repeating Cases 1 and 2.

Rachid Hadid and Mehmet Hakan Karaata 112

By Algorithm 3.1, no extra abnormal process is created. Thus, we can claim
the following result.

Corollary 4.1. If there exists no abnormal process in v;, then there also exists no
abnormal process in ~y;, for any j > i.

The following theorem shows that eventually a normal system configuration is
entered. A system configuration? is referred to as a normal configuration if and
only if it contains no process in an abnormal state. The theorem follows directly
from Corollary 4.1 and Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5.

Theorem 4.1. Starting from any initial configuration, the system enters a normal
configuration in at most D + 1 rounds, and the system configuration remains
normal thereafter.

Convergence and Correctness

In this section, we will focus on the definition of the number of tokens in the
whole network. From Theorem 4.1, we assume that there is no abnormal
process in the network (normal configuration). We denote by Token(p) if a
privileged rule of p is enabled or not. The notion of token as an enabled
privileged rule is not sufficient to enumerate the number of tokens of the system.
For example, the tokens left at the root will eventually circulate. So, they have
to be included in the computation of the total number of tokens in the network.
Another situation is the following: (T, = C)A (Tp,e {Tok,0,..., I-1})A (Sp, =
PN (Tnexsp = Tok), where p does not have the token since it cannot apply as,
but it will eventually have a token as soon as Next, assigns C to its T variable.
In this case, we say that p has a potential token and we denote it as PToken(p).
We denote by T, the potential number of tokens which accumulates at the
root. So,

1 if T, = CA Token(r)

£—1 i [T, = GToken(r)

Toor, =% £—T:—1 ifT: €{0;si8— 1} A Tokenir)
W0-T,—-2 ifT €A{0,...£—1} A Token(r)

0 otherwise

We denote T,,,, the potential number of tokens which could be at the non-
root processes. S0, T, = # {p: PToken(p)} such that PToken(p) (T, = C)A
TPp € {Tok, 0, ..., -I})A (Spp = P)A (Tnexp = Tok).Thus, the number of
tokens in the whole network is denoted by Ty and is equal to (7o, + Tporr +
#{p: Token(p)}). Observe that in any initial normal configuration, the number
of tokens in whole network is arbitrary. We show that the system enters a

113 A stabilizing l-exclusion algorithm in arbitrary rooted networks

normal configuration when T,,.,< [holds and continues to hold thereafter.

In Lemmas 4.8 and 4.10, we show that starting from any configuration; the
root sends all its tokens and initiates a PIF infinitely often. Then, in Lemma
4.11, we show that every process will join the tree Tree(r). In Lemma 4.12, we
show that after initiating each PIF, we reach a configuration where the number
of tokens in Tree(r) is null (T, = 0). Then, starting from this configuration,
the root sends always | tokens and the number of tokens in Tree(r) is less or
equal to [forever. We first need to show Lemmas 4.6 and 4.7.

Lemma 4.6 If PToken(p) holds for process p, then Token(p) holds in at most
h(Tree(p))+ I rounds.

Proof. Let p be a process such that PToken(p) holds for process p. So, the
condition (T, = CJ)A Tpy€ {Tox, O.... , I-1})A (Spp = P)A (Trexp = Tok)
holds. Let ¢ = Next,. Obviously, P, = p since T, = Tok. We will show that T,
= ((hence, Token(p)) holds in at most A{Tree(p)) + 1 rounds. We show this
result by induction on A(Tree(p)).

Basic Step: Let #(Tree(p)) = 1. So, g is a leaf process. We consider two cases.

1 - 8, = L. Then, in at most one round, g executes ag and changes its T value
to C. Hence, the result follows.

2 - S,# L. So, there exists ¢' € N, such that T,» = Cand P, = L. Then, in at
most one round, g changes its T value to Tok and points its Py to g.
Subsequently, in at most one round, ¢ executes ag and changes its T value
to C and the result follows.

Induction Step: Assume that the result is true for A(Tree(p))< k I, k > 1.
Consider the case where h(Tree(p)) = k. We need to consider two cases.

1 - Tgs, = Tok. Then, in at most one round, process g executes ao and assigns
C to T,. Hence, the result follows.

2 - Tg, = C. Weneed to consider two cases.

a) Token(S,). Then, in at most one round, S, executes as and changes its T
value to Tok. Subsequently, in at most one round, g executes ay and
changes its T value to C and the result follows.

b) PToken(S,). By induction hypothesis, Token(S,) holds within at most
h(Tree(S,)) +1 rounds. Then, we reach Subcase (a). So, the result
follows in at most two rounds

Lemma 4.7 For every process, if (T, = Toi)N (Spp# pV Tpt {Tok, 0,... , I-1})
holds for p, then T, = C holds in at most h(Tree(p)) + 2 rounds.

Rachid Hadid and Mehmet Hakan Karaata 114

Proof. Let p be a process such that (T, = T)A (Spy# pV Tppt {Tok, 0, ..., I-
1}), we need to consider two cases.

a) Token(S,). Then, in at most one round S, executes a6 and changes its T
value to Tok. Subsequently, in at most one round, p executes ay and
changes its T value to C. Hence, the result follows.

b) PToken(S,). From Lemma 4.6, Token(S,) holds within at most
h(Tree(S,)) + 1rounds. Then, we reach Case 1.

Lemma 4.8 The root process will send all its potential tokens in at most
h(Tree(r))+2 x -2 rounds.

Proof. Consider the following two cases.

1 - T, = C. We will show that Vp € N,, T, = C holds in at most h(Tree(r)) +
I rounds. Assume that there exists pe N, such that T,# C. So, T,e {F;
Tok}.

(a) T, = F. Then, in at most one round, p executes ay and changes its T
value to C.

(b)y T, = Tok. From Lemma 4.7, T, = C holds in at most h(Tree(p)) + 2
rounds.

2- Te{0,..,1-2} Letp = S, and g = Next,. We will show that T, = Tok
(Case a) and T, = C (Case b and c) holds in at most h(Tree(r)) + 1
rounds so that the root is enabled to send its next token. We have pe {C,
Tok} and g€ {C, Tok, F}.

(a) If T, = C, then from Lemma 4.6, Token(p) holds in at most
h(Tree(p))~+ 1 rounds. Then, after one round, p executes a6 and
changes its T value to Tok.

(b) If T, = F, then in at most one round, ¢ executes ao and changes its T
value to C.

(c) If T, = Tok, then from Lemma 4.7, g will change its T value to C within
at most h(Tree(q)) + 2 rounds.

Thus, T, = TokA T, = Cholds in at most ~(Tree(r)) + I rounds. Then, in
at most one round r executes a, increases it 7 value by one, and points its S, to
g. Subsequently, g changes its 7 value to Tok and Nextr changes its T value to C
in at most one round. By repeating this argument, we reach a configuration
where T, = [- I in at most 2x (/- 2) + 1. Hence, the results follows after at
most 2x [+h (Tree(r)) - 2 rounds.

Lemma 4.9 For every process p, if T, = B holds and continues to hold, then Vgc
Child,; T, = F holds in at most 3x h(Tree(p)) rounds.

115 A stabilizing l-exclusion algorithm in arbitrary rooted networks

Proof. Let p be a process such that 7, = B. In the worst case, we have a
configuration where (T, = B)A (Vpp€ Child,:: Tpo = C). In such a
configuration, p is not enabled until all its children change to F (ag). Let pye
Child,, if (VYpoe Child,.: T,, = C, then py can immediately forward the PIF (i.e.,
executes a; and changes its T value to B) to its children. Otherwise 3p;€
Childyg:: Tp# C(Tp€ {Tor, F}). So, po is not enabled until p; changes its 7'
value to C. If T,; = F, then p; changes its T value to C after one round.
Otherwise, i.e., Tp; = Tok, then by Lemma 4.7, p; will change its T value to C in
at most k(Tree(pl)) + 2 rounds. Subsequently, p, changes it T value to B in at
most one round and simultaneously all the children of p, change also their T
values to C. By repeating the same argument on the processes down the tree
Tree(p), the leaves of Tree(p) will change to B in at most A(Tree(pl)) rounds.
So, the B value is propagated through the tree Tree(p), i.e., from process p to
the leaves, in at most 2x h(Tree(p)) rounds. Once a leaf process changes its T
value to B, it initiates the feedback phase, i.c., changes its T value to F (ag), in at
most one round. Then, all the internal processes participate by forwarding the
feedback message to process p. The feedback message reaches all the children of
process p in at most A(Tree(p)) rounds. Since during this phase some processes
can change their T value to C, the system reaches a T-normal configuration
y—(Vp € Tree(p) :: v,p € BFt = F,C").

Lemma 4.10 The root process initiates a PIF and sends all its potential tokens
(infinitely often) in at most 5 x h(Tree(r)) + 2 x | + 4 rounds.

Proof.We need to consider the three following cases.

1 - T,e{C,0,1,, [I}. By Lemma 4.8, root sends all its tokens and we reach a
configuration where T, = R after at most h(Tree(r)) + 2x [rounds.

2 - T, = R. We will show that ¥p € N,, T, = C holds after at most h(Tree(r))
+ 2 rounds. Assume that there exists p € N,, such that T,# C. So, T,€ {F,
Tok} rounds.

(@) T, = F. Then, in at most one round, p executes ag and changes its T
value to C.

(b) T, = Tok. From Lemma 4.7, T, = C holds in at most h(Tree(p)) + 2
rounds. Then, in at most one round, r changes its T value to B (a,).

3 - T, = B. From Lemma 4.9, we reach a configuration where Vp € Child,, T,
= F holds after at most 3 x h(Tree(r)) rounds. Then, r changes to C in at
most one round.

Lemma 4.11 For every process p, the condition p € Tree(r) holds in at most ([n |
[l x(5 x h(Tree(r)) + 2 x 1+ 4) rounds.

Rachid Hadid and Mehmet Hakan Karaata 116

Proof. From Lemma 4.10, the root initiates tokens infinitely often. Obviously,
by the token distribution mechanism used in our algorithm, every process p will
be visited by a token (hence, p pe Tree(r)) after the root sends a set of n tokens
(n is the number of nodes in the network). It is clear that if / > n then every
process will receive a token after each wave of tokens. Otherwise, after the root
sends [n/l | waves of tokens, each process will receive at least one token. By
Lemma 4.10, each wave of tokens takes at most 5 x h(Tree(r)) + 2 x| + 4
rounds. So, every process will be visited by a token (i.e., causing the process to
join the tree Tree(r) after at most [n / [|x (5 x h(Tree(r)) + 2 x 1 + 4
rounds.

Starting from a normal configuration where Vp.: pe Tree(r), the root eventually
initiates (a4) the first PIF (Lemma 4.10), which is the propagation of B-segments
from the root to the leaves on Tree(r). All the internal processes participate by
forwarding the PIF to the leaf processes (a;). When the PIF wave reaches the leaves,
the leaf processes initiate the feedback phase (ag), which is the propagation of F -
segments from the leaves to the root. The internal nodes participate by forwarding
the feedback message to the root (ag). During this phase, some processes can erase
(clean) the trace of this phase by changing their T value to C (ag). The feedback phase
ends when it reaches all the children of the root. Thus, the system reaches a normal
configuration: «y : v — (Vp € Tree(r).: pu,, € BF* {F, C}*). It is clear that, from a
configuration, the root is enabled to terminate the current PIF (as). Then, the root
has | potential tokens, and all its children p are enabled to change to C (ag). As
explained above, the root can initiate the next token distribution (a;) only if all its
children changed their T value from F to C. So, the initial normal configuration INC
can be defined as follows:

v € INCé=> v — (Vp € Tree(r) :: p,, € {CHCHF, C}").

Lemma 4.12 Starting from any configuration, the system will eventually reach a
configuration v € INC inat most O ([n[l]x (I+ D)) rounds.

Proof. From Theorem 4.1, the system enters a normal configuration in at most
D + 1 rounds. Then, from Lemma 4.11, the system enters a configuration where
Vp :: p € Tree(r) holds in at most [n/ [|x (5 x h(Tree(r)) + 2 x [+ 4 rounds.
From Lemma 4.10, the root sends its tokens and initiates a new PIF in at most
[n]/ []x (5 x h(Tree(p)) + 2 x | + 4 rounds. So, we reach a configuration
{EIN in at most [n /I -I]x (5 x h(Tree(r)) + 2 x1 + 4 + D + I rounds.
Since h{ Tree(r)> D, the results follows.

Remark 4.1 v € INC = (Tyety = Tporr = 1)

By Lemmas 4.10, 4.11, and 4.12 the system will eventually reach a
configuration € INC. Then, the root sends a wave of / tokens and every token is

117 A stabilizing l-exclusion algorithm in arbitrary rooted networks

pushed towards the leaves. After all | tokens are distributed, the root initiates a
next PIF. It is obvious that starting from any configuration € INC, Algorithm
3.1 does not create any extra tokens.

Theorem 4.2 (Safety)V, € INC:Ve € e, ::Vy € €) = Ty < L.

Since the root sends tokens infinitely often, by Macro Next, every node
receives a token in a finite number of steps. The following theorem gives a
bound on the number of waves a process in Tree(r) must wait before it receives
a token.

Theorem 4.3 (Fairness) Starting in any arbitrary system configuration vy € INC,
each node p € Tree(r) will eventually receive (at least) one token during first W
waves of tokens such that W > [([1seu(p,) (#Childg)) | [if ptr and W =1 if
p=r.

Proof. We will prove this theorem by induction on length L, of u(rp).

Basic Step. The case where p=r is obvious. Consider the case where L, =, so
pE N,. It is easy to see that if W/> §, then each node p receives at least one
token. We notice that if we choose W such that Wi > m 6, (m is an integer such
that m##0), then p receives at least m tokens.

Induction step. Assume that the theorem is true for L,<k I, k > 1. Consider the
case where L, = k. By hypothesis, if Wi > (quﬁ(,,,pp) (#Child,)), P, will receive
at least one token, and if we choose W such that:

Wl > (#Childp,) (Hun(er))(#Childq):> W= [qumrl’p} (#Child,))[], then P,
receives at least #Childp, tokens. This will enable each of its children to receive
at least one token, in particular the node p.

The following result follows from Theorems 4.2 and 4.3.

Theorem 4.4 (Correctness) Starting in any arbitrary system configuration, the
system satisfies the properties of safety and fairness.

The following result follows from Lemma 4.12 and Theorem 4.4.

Theorem 4.5 (Self-stabilization) Algorithm 3.1 is a self-stabilizing l-exclusion
algorithm.

State Complexity

One of the main parameters to measure the efficiency of self-stabilizing
algorithms is the state complexity i.e., memory requirement per processor. In
distributed systems, it is highly desired to propose algorithms those do not
depend on the global properties (such as network size) which can be modified at
any time. Therefore, we propose an algorithm whose space complexity is

Rachid Hadid and Mehmet Hakan Karaata 118

independent of the size of the network » for any processor, and is independent
of [for all processors except the root. Since, the space requirement is ({ + 3)6,
states (or [log ((/ + 3)6;]) bits) for the root r and 4 xég x D states (or [4 log
((8,x D]) bits) for each non root process p, where &, is the degree of process p
and D is the diameter of the communication network. The root process r
maintains two variables: T,€ {0, I, , I- 1, R,B,C} and S, {I,....,6,}. The non
root process p maintains four variables: T, {T,, C.B,F}, S, P,:€{1,....6,}, and
L, 0,...,D. In the context of previous deterministic algorithms, the space
complexity is (! x n°) on rings, O(2") on complete networks, and O(Max?* ')
(Max >!} on trees. However, the space requirement of our algorithm mapped
on treesis ({ + 3)6, states for the root r and 4x (¢, - 1) states for each non root
process p, while it is only (/ + 1) states for the root r and 3 states for each non
root process p if mapped on rings (Villain, 1999; Hadid, 2002). To our
knowledge, since in general the diameter of a network is much smaller than the
number of nodes, the space complexity of the presented algorithm over
previously known approaches is efficiency. There remains the open question of
state optimality for self-stabilizing /-exclusion algorithm.

Notes on Liveness

As stated before, a drawback of our algorithm, as in many deterministic self-
stabilizing solutions to this problem in the current literature, is that we cannot
ensure that every execution of our algorithm always satisfies the liveness
property. On one hand, the root and any internal process can pass only one
token at a time and among a sequence of three processors at most one token can
exist. On other hand, the tokens that disappear at the leaves will not be
redistributed at the root process during this distribution. These two properties
go against increasing the number of potential privileged processors.

The evaluation of the number of processors having the tokens, and hence
having the privilege to enter the critical section, simultaneously depend strictly
on three parameters: the size of the network, the network topology, and /, which
makes this task more complex. However, based on the assumption / < [n/3], we
can observe that in any computation on various topologies, there exist some
configurations where / processes hold privileges concurrently.

Unfair Deamon

In this section we present sketch a proof to show that our algorithm works also
under an unfair daemon by showing that every process p will move infinitely
often even if the daemon is unfair. The proof depends on the initial system
configuration. If process p is in the tree rooted at the root process r. Then, as
our algorithm behaves similarly to the algorithm presented in (Hadid, 2002)
working under an unfair daemon, so process p moves infinitely often. Otherwise,

119 A stabilizing l-exclusion algorithm in arbitrary rooted networks

we need to show that process p will join the tree rooted at r. For that purpose,
we can show by induction on the distance from p to r that process p will receive
a token from r through its neighboring q in the tree rooted at r. Then, as long as
process p is not selected by the daemon to receive the token from g, process ¢
will not also be selected to participate in the next phase of the algorithm (i.e.,
PFC). However, as process ¢ is in the tree so both processes will move. Then,
process p will join the tree rooted at r, hence will move infinitely often.

CONCLUSIONS.

In this paper, we presented the first stabilizing / -exclusion algorithm in arbitrary
networks. This algorithm uses the PIF scheme and the Breadth-First token
distribution. Our algorithm stabilizes in only O ([n [{]x (I+ D)) rounds. Its space
requirement is (/ + 3)é, states (or[log ((I + 3)é,]) bits) for the root r and 4 xég x D
states (or [4 log (6,x D) bits) for a non-root process p. This is the first /-exclusion
algorithm on arbitrary network in which the space requirement is independent of the
size of the network for any process, and is independent of / for any process except one.
A drawback of our algorithm, as in many deterministic self-stabilizing solutions to this
problem in the current literature, is that we cannot ensure that every execution of our
algorithm always satisfies the /iveness property (low-level specification): some processes
may have to wait for others which are in their critical section, even if the total number
of processes in the critical section is less than /. Observe that our algorithm allows at
most one token to exist in a sequence of three processes. So, based on the assumption /
< [n/ 3], we can observe that in any computation on numerous topologies, there exist
some configurations where / processes hold a privilege concurrently. Implementing a
solution which satisfies the /iveness property is a future challenge.

REFERENCES

Abraham, U., Dolev, S., Herman, T., and Koll, L. (1997). Self-stabilizing I-exclusion. In Proceedings
of the Third Workshop on Self-Stabilizing Systems, Carleton University Press, pages 48-63.

Abraham, U., Dolev, S., Herman, T., and Koll, L. (2001). Self-stabilizing | -exclusion. Theoretical
Computer Science, 266:1-2:653-692.

Afek, Y., Dolev, D., Gafni, E., Merritt, M., and Shavit, N. (1990). A bounded rst-in, rst-enabled

solution to the l-exclusion problem. Proceedings of the 4th International Workshop on
Distributed Algorithms, Springer-Verlag, LNCS, 486:422-431.

Antonoiu, G. and Srimani, P. (2000). Self-stabilizing depth- rst multi-token circulation in tree
networks. International Journal of Parallel, Emergent and Distributed Systems, 16:1:17-35.

Bernard, T., Bui, A., Flauzac, O., and Nolot, F. (2010). A multiple random walks based self-
stabilizing k-exclusion algorithm in ad-hoc networks. International Journal of Parallel,
Emergent and Distributed Systems, Taylor Francis eds, 25:2:135-152.

Cournier, A., Datta, A., Petit, F., and Villain, V. (2002). Self-stabilizing pif algorithm in arbitrary
rooted networks. In 21st International Conference on Distributed Computing Systems, IEEE
Computer Society Press, pages 91-98.

A stabilizing l-exclusion algorithm in arbitrary rooted networks 120

Datta, A., Devismes, S., Horn, F., and Larmore, L. (2011). Self-stabilizing k-out-of-1 exclusion in
tree networks. Int. J. Found. Comput. Sci., 22(3):657-677.

Datta, A., Hadid, R., and Villain, V. (2003a). A new self-stabilizing k-out-of- | exclusion algorithm
on rings. In Self-Stabilizing Systems, ser. Lecture Notes in Computer Science, S.-T. Huang and
T. Herman, Eds., 2704:113-128.

Datta, A., Hadid, R., and Villain, V. (2003b). A self-stabilizing token-based k-out-of-l exclusion
algorithm. Concurrency and Computation: Practice and Experience, 15:1069 -1091.

Dijkstra, E. (1974). Self stabilizing systems in spite of distributed control. Communications of the
Association of the Computing Machinery, 17:11:643{644.

Dolev, D., Gafni, E., and Shavit, N. (1988). Toward a non-atomic era: | -exclusion as test case.
Proceeding of the 20th Annual ACM Symposium on Theory of Computing, Chicago, pages 78-
92.

Dolev, S., Israeli, A., and Moran, S. (1997). Uniform dynamic self-stabilizing leader election. IEEE
Transactions on Parallel and Distributed Systems, 8:4:420-440.

Fisher, M., Lynch, N., Burns, J., and Borondin, A. (1979). Resource allocation with immunity to
limited process failure. Proceedings of the 20th IEEE Annual Symposium on Foundations of
Computer Science, pages 234-254.

Fisher, M., Lynch, N., Burns, J., and Borondin, A. (1989). A distributed fifo allocation of identical
resources using small shared space. ACM Transactions Programming Languages Systems,
11:90-144.

Flatebo, M., Datta, A., and Schoone, A. (1994). Self-stabilizing multi-token rings. Distributed
Computing, Vol. 8, 8:133{142.

Gartner, F. (2003). A survey of self-stabilizing spanning-tree construction algorithms. School of
Computer and Communication Sciences, Technical Report IC/2003/38.

Gouda, M. and Haddix, F. (1996). The stabilizing token ring in three bits. Journal of Parallel and
Distributed Computing, 35:43-48.

Gradinariu, M. and Tixeuil, S. (2001). Tight space self-stabilizing uniform I-mutual exclusion.
Distributed Computing, Vol. 7, pages 83-90. 32

Hadid, R. (2000). Space and time efficient self-stabilizing | -exclusion in tree networks. Proceedings
of the 14th IEEE International Parallel and Distributed Processing Symposium, pages 529-534.

Hadid, R. (2002). Space and time efficient self-stabilizing | -exclusion in tree networks. Journal of
Parallel and Distributed Computing, 62(5):843-864.

Hadid, R. and Villain, V. (2001). A new efficient tool for the design of self-stabilizing I -exclusion
algorithms: the controller. In Proceedings of the 5th IEEE International Work-shop, WSS,
pages 137-151.

Masum, S., Akbar, M., Ali, A., and Rahman, M. (2010). A consensus-based | -exclusion algorithm
for mobile ad hoc networks. Ad Hoc Networks Journal, 8:30-45.

Peterson, G. (1990). Observation on | -exclusion. Proceedings of the 28th Annual Allerton
Conference on Communication, Control and computing, Monticello, pages 568-577.

Villain, V. (1999). A key tool for optimality in the state model. In DIMACS’99, The 2nd
Workshop on Distributed Data and Structures, Carleton University Press, pages 133-148.

Submitted : 06/03/2013
Revised : 15/07/2013
Accepted : 03/12/2013

Journal of Engg. Research Vol. 2 - (1) March 2014 pp. 121-132

RYCH W SR JECEEUR PR RPN NPT [P P RCH IR RS,
skl s &_5"""” CJ..U E;MYL &3)}0.”

. g;l':'! d"{bt*-‘ : _,‘ - _JS"‘ r':JJ? J’“"J‘. o ‘," Li.l:.; LT ‘dg.'}" d}upu
: I- O-:ﬁ“" ‘ErS"’J- r-::.‘“
g il ol o dacl] Zalall gl o Sl Syl S = 55 2SN dntigll n®
tdhoeall ASLaalt - S imals— slﬂ}_.ﬁj'lj iu.L.@J\ Z.:JS“
I ol = s o el — 59 5OYY duoigll)5 ***
deall &S0l - Sl = yToes e L:;#I:””

Lo

Baw gzl Blal Ol 55 (RBS) 3, 8,5)= sl 2l i b plasuan] o5 43
(8i) (galall O Skl (3 gassall (SB) (S5emNI mige &pnd L) (MEIS)
o5 4y A0keV) 2keV (o o515 Ol Blb (6 sn i (580) 5 gkl O S
o Slaall Clias sy L S Bl & gredl ol uldl Jga Jolaa plasnn]
Bl Jor o3y Aiee ST g &k 1100 1600 s -l 5 5] > Sl
cazall Jpa Jabes OF o aSTll L oS0l BLE s S AN Wsn dpnd o
190 & g 550l G yet™ U Sl Jonsd Of ledl oy il B> 5 (53l
38 o e D5 2KEV (G grunn Lo V80 J| 710 o &l Loty 40keV (6 sn Lo
S SN Jonidl (g b DLkl pr s el Doy de g 5edl LY
0559 51 AoV S Y1y 0yl dab land jslmadl 5 es N1 b pate
Bl dnd 3 eVl sty Jemd L8 idas O] L 4.5x10%em” e ST 55 A
o5 s e g sell DU Y e gl Y D 0l 3 L STl Jomidl
Jolae Sy 3256 we Ao ol Bl Ol 55 Al 2) e Jes
P foosell et dasly sy sl cxiall Jga Jelee OF o Jsa
o el Uasdl 3 e 3 sdtaly (gl 0,

