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ABSTRACT

The nonlinear model describes the vortex-induced resonance of long-span bridges under the action of natural
wind. The identification accuracy of its parameters directly affects the understanding of vortex-induced vibration.
Different algorithms have been used to solve this parameter identification problem, but their efficiency and accuracy
are not satisfactory. In this work, a firefly algorithm based on local chaos search and brightness variant (FACLBV)
was proposed. The characteristics of chaos made FACLBYV search the widely local scope and improve the accuracy
of the solution. FACLBYV modified the fixed initial brightness, discarded the absorption coefficient of light intensity,
linked the initial brightness of every firefly with the position of its solution space, and set the attraction of every
firefly as a simple linear function, which reduced the complexity of the algorithm and improved its efficiency. In
order to better verify the superiority of FACLBV, the simulation experiment included three parts: a comparison
between FACLBV and other firefly algorithms, the verification of the parameters identified by FACLBV, and the
nonparametric test between FACLBV and other intelligent algorithms. Simulation results showed that the
performance of FACLBYV is better than that of other algorithms.

Keywords: Firefly algorithm; Parameter identification; Nonlinear empirical models; Nonparametric test;
Vortex-induced vibration

INTRODUCTION

For long-span bridges, vortex-induced vibration (VIV) is a kind of harmful vibration, which is a current research
hotspot. Because of the complexity of fluid structure coupling, the VIV model is usually a nonlinear complex equation
or system of equations (Marra et al., 2017; Xu et al., 2015; Zhu et al., 2017), and the parameter identification of the
model is an optimization problem.

The grow-to-resonance method (GTR) (Ehsan & Scanlan, 1990) was initially used to identify parameters of
Scanlan’s nonlinear empirical model, but ubiquitous noise in wind tunnel tests had a very bad effect on the validity
and accuracy of identified parameters. Marra et al. (2011) employed the fourth-order Runge—Kutta method to identify
parameters of this model. With the given initial solution, parameters can be obtained by iterative calculations. This
identification method has higher accuracy than GTR but has higher complexity. Wang et al. (2013) used Fourier
transform to analyze the spectrum of wind tunnel test data, and obtained the amplitude and initial phase of each
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harmonic wave. With these amplitudes and initial phases as initial values, the parameters are identified by iterations.
This method is also susceptible to noise and its accuracy is limited. Xiong et al. (2016) proposed an analytical
identification method for parameters of the nonlinear self-excited aerodynamic system, which uses singular value
decomposition (SVD) to determine the number of harmonics, and uses the non-linear fitting of the self-excited
aerodynamic force to achieve the phase of the aerodynamic force. This method has strong anti-noise ability and high
accuracy, but its calculation is complex. Zhu et al. (2013) identified parameters of their nonlinear model by the
Levenberg—Marquardt algorithm (LMA). LMA belongs to a local search method, and the setting of'its initial solution
needs prior knowledge. Based on suitable initial solutions, LMA tries to minimize the error between the measured
and reconstructed force data by iterations, and then the approximate solution can be obtained. LMA repeatedly
calculates the inverse of the Hessian matrix in iterations, but it has high complexity.

Swarm intelligence algorithms have good optimization and rapid convergence, and especially they do not need
to set initial solutions, so they are often used to solve many complex problems. In terms of identifying parameters of
nonlinear models, many good intelligence algorithms have been proposed. These algorithms are divided into two
categories: the hybrid algorithm and the improved algorithm. GALMA is a hybrid algorithm, which uses GA to
exploit the solution space and LMA to explore the solution (Tian et al., 2017). NAPSO (Tian et al., 2018) and ISA
(Tian et al., 2019) are the improved algorithms, which improve performance by adjusting an optimization strategy.
NAPSO is an improved particle swarm optimization, which adaptively adjusts its search ability by the inertia weight
function. ISA magnifies the energy function of simulated annealing 10°-fold in order to ensure rapid convergence.
These intelligence algorithms are better than the traditional methods because of their intelligence. Seeking a novel
identification intelligent algorithm has become a research focus in recent years.

The firefly algorithm (FA), proposed by Yang (2010), is a new swarm intelligence optimization algorithm. The
algorithm imitates the attractive characteristics of natural fireflies. It simulates the optimization process by attracting
and moving between firefly individuals, but sometimes it will fall into the local minimum. In order to improve its
performance, the standard FA has been improved.

In this work, an improved firefly algorithm is proposed to identify parameters of a nonlinear VIV model. The
algorithm uses a chaotic operator to search locally, establishes adaptive brightness, and simplifies the calculation of
attraction in order to improve the convergence and efficiency.

RELATED WORK
VIV Models of Long-span Bridges

The VIV of long-span bridges is a complex physical phenomenon. Many researchers tried to build a pure
theoretical model to describe the VIV phenomenon, but such a model has not yet been proposed. Current research
mainly focuses on modeling of wind tunnel tests or field measurements.

Scanlan (Scanlan, 1981) proposed a single-degree-of-freedom model to describe the effect of vortex shedding
on the bridge deck. Due to fluid-structure coupling, the vortex-induced vertical force (VIVF) includes many nonlinear
components. The model is simple linear so that it failed to describe the complex VIV phenomenon, especially lock-
in, self-exciting and self-limited characteristics. In 1990, the linear model was improved by adding a nonlinear
component describing the nonlinear damping force, the nonlinear empirical model is as follows (Ehsan & Scanlan,
1990).
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where f y; s the force per unit length, p is the air density, U is the velocity of the oncoming flow, D is the
characteristic size of the structure section, £ is the nonlinear damping, @, is the circular oscillation frequency of
vortex shedding, ¢ is the phase angle, ) and ) are the displacement and velocity of the vertical motion,
respectively, K is the reduced frequency, Y] , ¥, , and & are the reduced frequency-depended coefficients, and #
denotes time.

To fit the spectrum of test data, Zhu et al.(2013) added a new quadratic term to Scanlan’s nonlinear model. In
addition, they rewrote the nonlinear damping term. Zhu’s nonlinear model is as follows.
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where Y3 is the new term, and y—zis changed to —.

The dimensionless form of Eq.(2) can be written as follows.
12 ' ' 1 .
By =m [ (=en =y + Yop+ Yopip + 2 €, sin(@, 5 +9)] (3)

where mrzpDz/m , M is the mass per unit span, 77 = y/D,s = tU/D, W, = CUSD/U.
Let x = (Y &, Y Y C , ), and based on the nonlinear fitting, the objective function of Eq.(3) can be
expressed

obj(x) = HFV[ _FV[ Hj @)

2 A
where ||®|| denotes the square of the L2 norm, [, indicates the measured VIVF, and F,, indicates the
VIVF reconstructed by Eq.(3).

For optimization problems, the equation has a minimum solution when the gradient is equal to zero. As far as

Zhu’s model is concerned, the main task is to find X to minimize Eq.(4). The parameters can be accurately identified
by the following equation.

x =arg min obj(x) (%)
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Standard Firefly Algorithm and its Improvements

In FA(Yang, 2010) , fireflies search for and move to brighter partners in the solution space to realize the
evolution. FA has three assumptions: 1) every firefly is unisex, 2) the attractiveness of every firefly is proportion to
its brightness, and 3) the brightness of every firefly is determined by the value of the objective function for the specific
problem. Therefore, firefly i will be attracted to the brighter firefly J , and the brightness is as follows:

=P ©)

where ,[)’0 is the initial brightness of the attracting firefly, usually 180 =1, y is the light absorption coefficient,
d is the distance between attracted firefly Z and attracting firefly j . Therefore, the attracted firefly will move to
the attracting firefly according to the following equation.

X, =x+p(x; -x)+a(r-0.5) O]

where X; and X ; are the positions of firefly 7 and firefly j , respectively, 7 is a random number in [0,1], and
O is the scale of the local search.

FA has the advantages of less adjustable parameters, simple structure and fast convergence. However, there are
some shortcomings, such as a slow convergence rate, easy stagnation, and premature convergence.

Although FA has been applied in many fields, its optimization ability mainly depends on the inter-attraction
between firefly individuals. Once the best firefly is captured by the local extremum, it will be difficult to get rid of.
Especially in the early stage of evolution, the best firefly in the population will attract other fireflies to quickly
approach it, which will greatly reduce the diversity of the population. At the later stage of FA, most fireflies gather
near the optimal value, and the convergence rate of the population is too slow or even stagnates.

In order to enhance the performance of FA, researchers have improved FA, such as parameter change, strategy
level change, and integration of other intelligent algorithms. The parameter o has a great effect on the local search
ability of FA. If a is too large, it jumps out of the neighborhood space of the current solution, which makes FA
unstable. If o is small, the search area is small, resulting in the inefficiency of FA. In order to make o in a reasonable
range, researchers mainly focused on that a is viewed as a function related to the iteration, and this function maybe
linear (Liu et al., 2015; Yan et al., 2012), non-linear (Baghlani et al., 2013; Shafaati & Mojallali, 2012; Yang, 2013;
Wang et al., 2012), or chaotic operators (Coelho et al., 2011; Feng et al., 2013). The parameter ﬁ is the attraction
step of firefly 7 moving towards firefly J . If ﬁ = (), it does not move, if 0 < ﬁ <1, it moves to firefly J at ﬁ ,if
IB > 1, it moves over firefly J in the direction of firefly # to firefly J . ﬁ is generally set as different functions
related to the distance, and sometimes it is regarded as the chaotic function. The parameter y is the absorption factor,
which affects the value of ﬁ .y isalso set as various functions (Lukasik & Zak, 2009). Cheung et al.(2014) replaced
the constant Y with a distance-based adaptive coefficient, designed a new adaptive coefficient based on gray
relational analysis, and developed an adaptive firefly algorithm. In addition, Tilahun and Hong (2012) changed the
moving direction of fireflies which is the best for the current optimal solution. Fu et al. (2015) used the strategy to
generate a perturbation solution around the current optimal solution. Kazemzadeh-Parsi (2014) replaced the several
worst solutions with the several random generated solutions. Wang and Chu (2019) first chose better fireflies as a
new set, and then selected fireflies from the set to move with a certain probability strategy. Thus, every improved FA
is the best method for a certain problem.
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THE FIREFLY ALGORITHM BASED CHAOTIC LOCAL SEARCH AND
BRIGHTNESS VARIANT (FACLBY)

Variant of the Brightness of Each Firefly

The assumption ﬁo = lin FA does not reflect the actual situation. Since the location of fireflies directly affects
their brightness and attractiveness, f3, should be set to a function related to their location and the function is as

follows.
By (x;) =obj(x,) (8)

In other firefly algorithms, the attraction of the it/ firefly to the jth firefly is p= /J’Oe_y i Tts role is to
reduce the attraction of fireflies due to the increase of distance. This expression needs exponential operation, which
makes the algorithm highly complex.

The initial brightness of every firefly is known, but in the process of optimization, the attractiveness of each
firefly varies with its position in the solution space. Therefore, the attraction of each firefly will be improved.

__ By(x)—min{obj(x);
P = (o)} - minfobj (o)} ®

The term min {Ob] (x)} is the minimum objective value in fireflies, Max {Ob] (x)} is the maximum
objective value. According to Eq.(9), the better the location of the firefly is, the brighter it is, and the shorter its step
will be. The best firefly randomly moves in its neighborhood.

Local Search Based on Logistic Chaos

Chao optimization, a novel optimization technology, has been widely used in optimization problems in recent
years. Chaos is the unique phenomenon of non-periodic motion in non-linear systems. It has an exquisite intrinsic
regular chaotic motion. It has ergodicity, randomness and regularity. The chaotic variables can traverse all states
without repetition, which effectively avoids premature falling into a local optimum and improves the ability of global
optimization. These characteristics are used to improve the efficiency of the stochastic optimization algorithm,
enhance the optimization ability of the algorithm, and ensure the stability of the algorithm. In this work, the logistic
chaotic operator was used.

¢, =bc_(l-c_) (10)

where € is the chaotic operators of the z iteration, 0=4 , the initial chaotic operator is between 0 and 1, and
0.25, 0.5, and 0.75 are expected.

In addition, the local search range decreases with the increase of iteration times. So, the scale factor is written
as

a=0.99a, (11)

Therefore, the location of fireflies is updated by the following equation:

X =xl+ Blx, - x,) +ac, (12)

7
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FACLBYV Algorithm

The algorithmic pseudo-code of FACLBYV is as follows:
Input: 0 =4, ¢,

Output: X,

(1) Randomly generate an initial firefly population {xio |i=1,...,N} and calculate
B i =1, N},
(2) Calculate {1(x)|i=1,..., N} andlet B(x]) = 1(x])
3o, =3
(4) For t=1:Maxiter
{
Generate a new population {z, |1 =1,..., N} and calculate {0bj(z,)|i=1,...,N}
Compute the current chaotic operator C,
For i=1:N
For j=1:N
Calculate 3(x])
If 0bj(x;™) > 0bj(x;™)
Calculate xl.t
Generate a temporary firefly tmpﬂy location xl.t and compute Ob] (tmpﬂy)
If obj(tmpfly) <obj(z;) then z, < tmpfly
If obj(z,) <obj(x,,,) then X, <z,
Select the N best fireflies from the new population {z, |i =1,..., N} and the current population
{x/ |i=1,..., N} to form the next generation population
Compute o according to Eq.(11)
H

(5) Output X, ,
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SIMULATION RESULTS

This selection includes three parts: one is the comparison of FACLBV with other FAs, the second is the
verification of FACLBV validity, and the is the nonparametric test for FACLBV and different optimization
algorithms.

The Comparison of FACLBV With Other FAs

In this work, based on wind tunnel test data and Zhu’s nonlinear model, FACLBYV was compared with other six
algorithms in performance. In Table 1, those algorithms are described in detail. For FAN, in each evolution, in
addition to the contemporary population, a new population was randomly generated. After evolution, the best N
fireflies were selected from the contemporary and new populations formed the next generation population. In FACP,
the chaotic operator was used to generate the initial population. FACL means the chaotic operator was used in the
local search. For FABV, the initial brightness of each firefly relates to its own position. In FAGV, the parameter )
adaptively varies with the firefly’s position.

Table 1. Description of different improved algorithms.

Algorithm Description

FAN Multipopulation strategy, o, =3 and a = 0.99[060 , ﬁo =l,y= 1

The initial population based the chaotic strategy, o,=3 and o = 0.99 a,,

FACP
ﬁo =1,y= 1
FACL ¢y=0.6and ¢, =4c,_(1-c,_)), ay=3and a =0.99a,, 8, =1,y =1
o,=3and o = 0.99[060 , Y= 1,
FABV . . . . . .
B = (obj(x,) - min{obj(x)})/(max {obj(x)} — min{obj(x)}) .
=3and 0 =0.9%a, ,8, =1, ) =o0bj(x.),
FAGV aO an 0 ﬁO ﬁO(xl) OJ(xl)

y = (By(x;) - min{obj(x)})/(max {obj(x)} —min{obj(x)})

Multipopulation strategy, a,=3 and a =0.99'a, , fB,(x,) = 0bj(x,) .y =1,
FACLBV c,=0.6and ¢, =4c,_ (1-c,_,).

B = (B,(x;) - min{obj(x)})/(max{obj(x)} — min{obj(x)})
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For the above algorithms, a population had ten fireflies, the maximum number of iterations was 30, and the
number of runs was 20. Table 2 shows the running results of different algorithms, {1 denotes the mean, and SD

denotes the standard deviation.

Table 2. Simulation results ( 7ime : the CPU time).

Algorithm H SD Max Min
Ob] 1.1921E-04 1.9393E-06 1.2346E-04 1.1633E-04
FA
Time 29.3373 0.9466 31.7766 27.8206
Ob] 1.1791E-04 1.3335E-06 1.2018E-04 1.1526E-04
FAN

Time 29.8554 1.6798 32.8126 26.8312

Ob] 1.1923E-04 1.9201E-06 1.2535E-04 1.1639E-04
FACP

Time 26.1583 1.8900 31.7789 22.8484

Ob] 1.1530E-04 6.8478E-07 1.1655E-04 1.1440E-04
FACL

Time 28.6282 0.8469 30.0058 26.73

Ob] 1.1841E-04 1.5327E-06 1.2110E-04 1.1596E-04
FAGV

Time 26.0908 1.4629 28.758 23.0305

Ob] 1.1829E-04 2.1026E-06 1.2224E-04 1.1523E-04
FABV

Time 27.9779 2.6700 32.8406 249617

Ob] 1.1470E-04 5.8561E-07 1.1647E-04 1.1392E-04

FACLBV
Time 24.4298 2.7951 27.9535 18.0469

Table 2 shows the simulation results of twenty runs for different algorithms. It can be seen that the logistic
operator employed in local searching makes FACL and FACLBYV better than those of the other algorithms in the
objective value, while the logistic operator employed in the initial population makes the objective value of FACP
the worst. No matter the objective value or the running time, the adaptive strategy makes FACLBV, FABV, and
FAGYV better than FA. The multi-population strategy improves the objective value of FAN, but it increases its running
time. Hence, FACLBYV is the best.



82 An improved firefly algorithm for identifying parameters of nonlinear empirical models

The Verification of Validity of Identified Parameters

Parameters of Zhu’s model were identified by FACLBYV, the validity and accuracy of parameters were used to

assess FACLBV’s performance.

First, the time history of ﬁ’Vl was reconstructed by Eq.(3) with identified parameters, ﬁVI was compared with

I*:'V, - Figure 1 shows the comparison of frequency and time domains. According to Figure 1(a), /7, has the same
frequency components as £, . In Figure 1(b) the curve of /7, is similar to that of F,.
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Figure 1. Comparison of VIVFs. (a) Frequency domain. (b) Time domain.

With ﬁ'VI, the Newmark- 3 was used to predict the time history of vertical displacement. Fig 2 shows the

measured displacement compared with the predicted displacement. Figure 2(a) shows that both of the measured and
predicted displacements had the same spectrum. In Figure 2(b), the envelope of the predicted displacement well fitted
that of the measured displacement, particularly at the maximum displacement. The validity and accuracy of identified
parameters were verified from VIVFs and displacements. Therefore, FACLBYV is valid.
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Figure 2. Comparison of displacements. (a) Frequency domain. (b) Time domain.
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The Nonparametric Test of Different Algorithms (Garcia et al., 2009)

The nonparametric test was used to evaluate the performance of the above FAs. The fit coefficient R? was
used to evaluate the algorithm performance, according to /7, and F,.

Using FACLBYV as the key, the Wilcoxon test was used to evaluate the performance of different algorithms. W*
is given by the sum of all of the positive ranks, W™ is given by the sum of all of the negative ranks. R denotes that the
null hypothesis is rejected, A is that the null hypothesis cannot be rejected.

Tables 3 and 4 are results of the nonparametric test for different FAs. In Table 3, FA, FACP, and FAN have the
same W-, and it is zero. FABV is one, and FAGYV is two. Therefore, their asymptotic significances (Asymp.Sig) are
zero, which means they have significant differences compared with FACLBV at all levels. While the W~ of FACL is
75,and W is 135, FACL and FACLBYV have no significant differences at different levels. Table 4 shows the mean
rank of different FAs, the Chi-Square is 70.877 and the Asymp.Sig is zero. FACLBV has the highest value, and
FACP has the lowest value. Therefore, it can be seen from Tables 3 and 4 that FACLBYV is the best.

Table 3. Wilcoxon signed ranks test for FAs.

Algorithm w* \\A a=0.01 a=0.02 a=0.05 a=0.1
FA 210 0 R R R R
FACP 210 0 R R R R
FABV 209 1 R R R R
FAGV 208 2 R R R R
FAN 210 0 R R R R
FACL 135 75 A A A A

Table 4. Friedman test for FAs.

Algorithm Mean Rank
FACLBV 6.60
FACL 6.15
FAN 3.60
FAGY 3.23
FABV 3.05
FA 2.73
FACP 2.65
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GALMA, NAPSO, ISA, and FACLBYV also were compared by the nonparametric test. With the same data and
simulation environment, they were used to identify parameters of Zhu’s nonlinear model, R is employed to
evaluate their performance.

In Table 5, FACLBYV is superior to GALMA at different levels. For GALMA, the Asymp.Sig is zero, FACLBV
and GALMA have significant difference at all levels. The Asymp.Sig of NAPSO is 0.037, FACLBV and NAPSO
have no significant differences at different levels except for a=0.01 and a=0.02. While FACLBV and ISA have no
significant difference at all levels.

Table 5. Wilcoxon signed ranks test.

Algorithm w* W a=0.01 a=0.02 a=0.05 a=0.1
GALMA 55 0 R R R R
NAPSO 48 7 A A R R

ISA 35 20 A A A A

Table 6 shows the results of Friedman test for the four algorithms. The Chi-square is 16.2 and the Asymp.Sig is
0.001. FACLBYV has the maximum mean rank, while GALMA has the minimum mean rank. Therefore, FACLBYV is
the best, followed by ISA.

Table 6. Friedman test for the four algorithms.

Algorithm Mean Rank
FACLBYV 34
ISA 3.1
NAPSO 2.2
GALMA 1.3
CONCLUSION

In the work, FACLBYV was proposed to identify parameters of Zhu’s nonlinear model. FACLBYV increased the
convergence rate to obtain the global optimal. FACLBYV used the chaotic operator to escape from the local optimal
for its particularly inherent randomness and ergodicity. FACLBV linked the initial brightness of each firefly to its
position, rather than setting it to constant 1. In addition, to enhance the efficiency of FACLBYV, the parameter /)7 was
simplified by overlooking the light absorption parameter. The simulation results demonstrated that FACLBV can
quickly and effectively obtain the global or near-global optima compared with the other mentioned algorithms.

In the field of civil engineering, optimization is an attractive topic, and the efficient optimization should be
developed depending on the analysis of the specific engineering problem. Further work is to apply FACLBV and
develop a metahybrid algorithm to solve the optimization problems of the anti-wind study for long-span bridges.
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