A complementary metal oxide semiconductor (CMOS) bandpass filter for cost-efficient radio frequency (RF) appliances

Mohammad Arif Sobhan Bhuiyan, Mastura Binti Omar, Mamun Bin Ibne Reaz, Noorfazila Kamal, Sawal Hamid Md Ali

Abstract


A band pass filter is an inherent part of every radio frequency (RF) transceiver. The
usage of spiral inductors in band-pass filters cannot overcome limitations such as loss due to parasitic effects, large chip area, low quality factor, less tenability, etc. Therefore, this paper presents an active inductor based design of a second order bandpass filter in 0.18μm complementary metal oxide semiconductor (CMOS) technology for 2.4 GHz radio frequency (RF) applications. The centre frequency of the proposed
band pass filter can be adjusted from 1.86 GHz to 3.33 GHz with high Q factor of 250 at 2.45GHz. This filter dissipates only 3.407 mW at 1.5V supply voltage and occupies only 0.0014 mm2 chip area.


Keywords


Active inductor; band-pass filter; complementary metal oxide semiconductor; integrated circuits; radio frequency.

Full Text:

PDF

References


Aljarajreh, H., Reaz, M., Amin, M.S. & Husain, H. 2013. An active inductor based low noise amplifier

for RF receiver. Electronics and Electrical Engineering, 19:49-52.

Allidina, K. & Mirabbasi, S. 2006. A widely tunable active RF filter topology. 2006 IEEE International

Symposium on Circuits and Systems (ISCAS 2006), Island of Kos, pp.1- 4.

Andriesei, C., Goras, L., Temcamani, F. & Delacressoniere, B. 2009. Wide tuning range active RF

band-pass filter with MOS varactors Romanian Journal of Information Science and Technology,

:485-495.

Arifin, M., Mamun, M., Bhuiyan, M.A.S. & Husain, H. 2012. Design of a low power and wide band

true single-phase clock frequency divider. Australian Journal of Basic and Applied Sciences, 6:

-79.

Aziz, F.I.B.A., Mamun, M., Bhuiyan, M.A.S. & Bakar, A.A.A. 2013. A low drop-out voltage regulator

in 0.18 μm CMOS technology. Modern Applied Science, 7:70-76.

Bakken, T. & Choma, J. 2003. Gyrator-based synthesis of active on-chip inductances. Analog Integrated

Circuits and Signal Processing, 34:171-181.

Bhuiyan, M.A.S., Chew, J.X., Reaz, M. & Kamal, N. 2015. Design of an active inductor based LNA in

Silterra 130 nm CMOS process technology. Journal of Microelectronics, Electronic Components

and Materials, 45:188-194.

Bhuiyan, M.A.S., Reaz, M., Jalil, J., Rahman, L.F. & Chang, T.G. 2014. Design trends in fully

integrated 2.4 GHz CMOS SPDT switches, Current Nanoscience, 10:334-343.

Bhuiyan, M.A.S., Zijie, Y., Yu, J.S., Reaz, M.B.I., Kamal, N. & Chang, T.G. 2016. Active inductor

based fully integrated CMOS transmit/receive switch for 2.4 GHz RF transceiver, Anais da

Academia Brasileira de Ciências, 88:1089-1098.

Chen, S.W., Wu, J.W., Wu, J.D. & Li, J.S. 2011. Tunable active band-pass filter design. Electronics

letters, 47:1019-1021.

Choi, Y. & Luong, H.C. 2001. A high-Q and wide-dynamic-range 70 MHz CMOS band-pass filter

for wireless receivers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, 48:433-440.

Córdova, D., Cruz, J. & Silva, C. 2009. A 2.3 GHz CMOS high-Q band-pass filter design using an active

inductor. XV Workshop Iberchip Buenos Aires, Argentina, pp. 496-500.

Gao, Z., Ma, J., Yu, M. & Ye, Y. 2008. A fully integrated CMOS active band-pass filter for multiband RF

front-ends IEEE Transactions on Circuits and Systems II: Express Briefs, 55:718-722.

Idris, M.I.B., Reaz, M.B.I. & Bhuiyan, M.A.S. 2013. A low voltage VGA for RFID receivers, 2013

IEEE International Conference on RFID Technologies and Applications, Johor Bahru, Malaysia,

pp. 1-4.

Krishnamurthy, S.V., El-Sankary, K. & El-Masry, E. 2010. Noise-cancelling CMOS active inductor

and its application in RF band-pass filter design. International Journal of Microwave Science and

Technology, 2010:1-8.

Kuhn, W.B., Nobbe, D., Kelly, D. & Orsborn, A.W. 2003. Dynamic range performance of on-chip

RF band-pass filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, 50:685-694.

Lin, L.M., Shun, W.H. & Tzuang, C.K.C. 2011. 1.58-GHz third-order CMOS active band-pass filter with

improved passband flatness. IEEE Transactions on Microwave Theory and Techniques, 59:2275-

Ren, S. & Benedik, C. 2013. RF CMOS active inductor band pass filter with post fabrication calibration.

AEU - International Journal of Electronics and Communications, 67:1058-1067.

Rosli, K.A., Daud, R.M., Mamun, M. & Bhuiyan, M.A.S. 2013. A comparative study on SOI MOSFETs

for low power applications. Research Journal of Applied Sciences, Engineering and Technology,

:2586-2591.

Uddin, M.J., Nordin, A.N., Reaz, M. & Bhuiyan, M.A.S. 2013. A CMOS power splitter for 2, 45 GHz

ISM band RFID reader in 0, 18 μm CMOS technology. Tehnički vjesnik, 20:125-129.

Wang, Y., Ye, L., Liao, H. & Huang, R. 2012. Cost-efficient CMOS RF tunable band-pass filter with

active inductor-less biquads. 2012 IEEE International Symposium on Circuits and Systems

(ISCAS), Seoul, pp. 2139-2142.

Weng, R. & Kuo, R. 2007. An ω 0-Q tunable CMOS active inductor for RF band-pass filters. 2007

International Symposium on Signals, Systems and Electronics (ISSSE’07), Montreal, pp. 571-574.

Wu, Y., Ding, X., Ismail, M. & Olsson, H. 2003. RF band-pass filter design based on CMOS active

inductors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

:942-949.

Xiao, H. & Schaumann, R. 2007. A 5.4-GHz high-Q tunable active-inductor band-pass filter in standard

digital CMOS technology. Analog Integrated Circuits and Signal Processing, 51:1-9.

Xu, Z., Winklea, D., Oh, T.C., Kim, S., Chen, S.T.W., Royter, Y., Lau, M., Valles, I., Hitko, D.A. &

Li, J.C. 2014. A 5th order 0.8/2.4 GHz Programmable Active Band- pass Filter for Power DAC

Applications. 2014 IEEE Radio Frequency Integrated Circuits Symposium, pp. 57-60.

Yu, C., Groves, R.A., Xuejue, H., Zamdmer, N.D., Plouchart, J.O., Wachnik, R.A., Tsu, K.J. &

Chenming, H. 2003. Frequency-independent equivalent-circuit model for on-chip spiral inductors.

IEEE Journal of Solid-State Circuits, 38:419-426.


Refbacks

  • There are currently no refbacks.