Application of tilt integral derivative control on two-area power system



هذا ورقة الهدايا ل جديد نهج، إمالة التكامل مشتق (TID) سيطرة، إلى استقرار تردد الاختلافات تحت حمل التغييرات في تلقائي جيل سيطرة (AGC). ال TID سيطرة غير تطبيقي إلى AGC ل من لها أفضل استجابة و أعلى درجة من حرية في اختيار المعلمات. هذا لديها متفوق الصفات مثل كما بسيط المعلمة ضبط و أفضل اضطراب الرفض نسبة. في إضافة، هذا عروض تافه تأثير من المعلمة تغيير في ال مرغوب استجابة. إلى بحث هؤلاء سمات ، ل اثنان- منطقة حراري نظام تتألف من غير- تسخين التوربينات غير يعتبر إلى دراسة. إضافي ، حساسية تحليل لديها كان نفذت خارج إلى بحث ال متانة من ال TID مراقب. ال مراقب مكاسب هي الحصول عليها بواسطة حل ل مقيدة غير- خطي الأمثل باستخدام ل التكامل مرة مطلق خطأ (ITAE) مؤشر. كما ل نتيجة ، ل مقارنة بين التكامل سيطرة ، PID سيطرة و TID سيطرة يكشف أن TID مراقب علبة نقل أفضل أداء إلى AGC.


This paper presents a new approach, tilt integral derivative (TID) control, to stabilize frequency variations under load changes in automatic generation control (AGC). The TID control is applied to AGC because of its better response and higher degree of freedom in choosing the control parameters. It has superior qualities such as simple parameter tuning and better disturbance rejection ratio. In addition, it shows insignificant effect of parameter variation on the desired response. To examine these attributes, a two-area thermal system consisting of non-reheat turbine is considered for study. Further, sensitivity analysis has been carried out to explore the robustness of the TID controller. The controller gains are obtained by solving a constrained non-linear optimization using an integral time absolute error (ITAE) index. As a result, a comparison between Integral control, PID control and TID control reveals that TID controller can deliver better performance for AGC.


Automatic generation control; constrained non-linear optimization; Integral control; PID control; TID control.

Full Text:



Alomoush, M. I. 2010. Load frequency control and automatic generation control using fractional order controllers. Journal of Electrical Engineering 91: 357-368.

Byrd, R. H., Hribar, M. E. & Nocedal, J. 1999. An Interior Point Algorithm for Large-Scale Nonlinear Programming, SIAM Journal on Optimization. SIAM Journal on Optimization 9: 877–900.

Cam, E. & Kocaarslan, I. 2005. Load frequency control in two area power systems using fuzzy logic controller, Energy Conversion and Management 46: 233-243.

Cohn, N. 1957. Some aspects of tie-line bias control on interconnected power systems, American Institute of Electrical Engineers Transactions 75: 1415–1436.

Cohn, N. 1967. Considerations in the regulation of interconnected area, IEEE Trans. Power Syst. 86:1527–1538.

Concordia, C. & Kirchmayer, L., K. 1953. Tie line power and frequency control of electric power systems, American Institute of Electrical Engineers Transactions 72: 562–572.

Dorf, R. C. & Bishop, R. H. 2001. Modern control systems, 9th edn. Prentice-Hall, New Jersey.

Elgerd, O. I. 1983. Electrical Energy Systems Theory an Introduction, 2nd ed. New Delhi, India: Tata McGraw –Hill.

Fosh, C. E. & Elgerd, O. L. 1970. The megawatt frequency control problem: a new approach via optimal control theory, IEEE Transaction Power System 89: 563-577.

Kirchmayer, L. K. 1959. Economic Control of Interconnected Systems. New York, NY: Wiley.

Kocaarslan, I. & Cam, E. 2005. Fuzzy logic controller in interconnected electrical power systems for load-frequency control, Electrical Power and Energy Systems 27: 542-549.

Kundur, P. 1994. Power system stability and control, McGraw-Hill, New York.

Kwatny, H. G., Kalnitsky, K. C., Bhatt, A. 1975. An optimal tracking approach to load frequency control, IEEE Trans Power Appl Syst 94: 1635–1643.

Lee, K. Y. & El-Sharkawi, M. A. (2008). Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, , Eds.. Hoboken, NJ: Wiley-IEEE Press.

Lurie, B. J. 1994. Three-parameter tunable tilt-integral derivative (TID) controller, US Patent US5371670.

Manabe, S. 1960. The non-integer integral and its application to control systems, Japan Institute of Electrical Engineer Journal 80: 589–597.

Miller, K. S. & Ross, B. 1993. An introduction to the fractional calculus and fractional differential equations. Wiley, New York.

Oldham, K., B. & Spanier, J. 1974. The fractional calculus. Academic Press, New York.

Pan, C. T., Liaw, C. M. 1989. An adaptive controller for power system load-frequency control. IEEE Trans Power Syst 14:122–128.

Podlubny, I. 1994. Fractional-order systems and fractional-order controllers. Institute of experimental physics, The Slovak academy of sciences, UEF-03-94, Kosice.

Podlubny, I. 1994. Fractional-order systems and PIλDμ controllers, IEEE Transactions on Automatic Control 44: 208–214.

Roy, R., Bhatt, P & Ghoshal, S.P. 2010. Evolutionary computation based three-area automatic generation control. Expert Systems with Applications 37: 5913-5924.

Sahu, R. K., Panda, S. & Padhan, S. 2014. Optimal gravitational search algorithm for automatic generation control of interconnected power systems. Ain Shams Engineering Journal 5: 721-733.

Samko, S. G., Kilbas, A.A & Marichev, O.I. 1987. Fractional integrals and derivatives and some of their applications. Nauka Tech,Minsk.

Taher, S.A., Fini, M. H.,& Aliabadi, S.F. 2010. Fractional order PID controller design for LFC in electric power systems using imperialist competitive algorithm. Ain Shams Engineering Journal 5: 121-135.

Van Ness, J. E. 1963. Root loci of load frequency control systems, IEEE Transactions Power Apparatus and System 82: 712–726.

Vinagre, B. M., Podlubny, I. & Dorˇc´ak, L., et al. 2000 On fractional PID controllers: a frequency domain approach, in Proceedings of the IFAC Workshop on Digital Control. Past, Present and Future of PID Control. Terrasa, Spain.

Waltz, R. A., Morales, J. L., Nocedal, J. & Orban, D. 2006. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming 107:. 391–408.

Xue, D. & Chen, Y. 2002. A Comparative Introduction of Four Fractional Order Controllers, Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R. China.

Xue, D., Chen, Y. & Atherton, D., P. 2007. Linear feedback control: analysis and design with MATLAB. SIAM, Philadelphia.

Ziegler, J., G., Nichols & N., B. 1942. Optimum settings for automatic controllers, Transaction of the American Society of Mechanical Engineers 64: 759–768.

Zribi, M., Al-Rashed, M. & Alrifai, M., 2005. Adaptive decentralized load frequency control of multi-area power systems, Electrical Power Energy System 27: 575-583.


  • There are currently no refbacks.