Some geotechnical properties and damping ratio of clay nanocomposites

Payam Majedi, Suat Akbulut, Zeynep Nese Kurt

Abstract


Natural clays soils are commonly used in dams, landfills, nuclear plants, etc. as an impermeable component or protecting liner. However, there could be permanent damages in structural elements due to the problems such as swelling, settlement, and heaving of these soils because of varieties in water contents over time. To remove these issues, stabilization of natural clay soils by the use of chemical additions is a prevalent subject of research. Recently, clay polymer interactions are commonly used for the improvement of nanocomposites. In addition, hydrophobic organoclays are preferred to eliminate the water affinity of clay nanocomposites. In this research, to improve damping ratio of clay liners, clay-nanocomposites are obtained from a hydrophobic organoclay, interacted with different concentrations of the latex polymer. Some geotechnical properties of these nanoclay-composites such as specific gravity, compaction parameters, unconfined compressive strength and swelling pressure have been investigated. Additionally, damping ratios of these clay-nanocomposites are determined with a computer-based and multi-channel analysis system, pulse vibration measurement system. The test results found that specific gravities, maximum dry unit weights, unconfined compressive strengths, and swelling pressures of clay-nanocomposite samples decrease with increase in latex concentration. On the other hand, damping ratios of samples are increased with latex concentration.


Keywords


Clay-nanocomposites; contact angle; damping ratio; geotechnical properties; hydrophobic organoclay; unconfined compressive strength.

Full Text:

PDF

References


Aghaei Araei, A., Razeghi, H. R., Hashemi Tabatabaei, S. & Ghalandarzadeh, A. 2010. Dynamic properties of gravelly materials. Transactions A: Civil Engineering, Sharif University of Technology, 17(4): 245-261.

Anado, P. 2012. Polymer/Clay Nanocomposites: Concepts, Researches, Applications and Trends for The Future. In Ebrahimi, F(Ed.), Nanocomposites-New Trends and Developments, (pp. 1-16). Publisher: InTech. doi: 10.5772/50407

Akbulut, S., Kurt, Z. N., Arasan, S. & Pekdemir, Y. 2013. Geotechnical properties of some organoclays. SADHANA Academy Proceedings in Engineering Sciences, 38(2): 317-329. doi: 10.1007/s12046-013-0120-x

Akbulut, S., Kurt, Z. N. & Arasan, S. 2012. Surfactant modified clays’ consistency limits and contact angles. Earth Sciences Research Journal,16(2): 13-19.

Akbulut, S., Kurt, Z. N. & Arasan, S. 2010. Electrokinetic properties of surfactant modified clays. International Journal of Civil and Structural Engineering, 1(3): 354–361. URL:http://www.ipublishing.co.in/jcandsevol1no12010/EIJCSE2007.pdf

Alexandre, M. & Dubois, P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, 28(1-2): 1-63. doi: 10.1016/S0927-796X(00)00012-7

ASTM D 1557-00. 2000. Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM International. West Conshohocken. PA. doi: 10.1520/D1557-00

ASTM D 2166-00. 2000. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International. West Conshohocken. PA. doi: 10.1520/D2166-00

ASTM D 4546-08. 2008. Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils. ASTM International. West Conshohocken. PA. doi: 10.1520/D4546-08

ASTM D 4892-14. 2004. Standard Test Method for Density of Solid Pitch (Helium Pycnometer Method). ASTM International. West Conshohocken. PA. doi: 10.1520/D4892

Azzam, W. R. 2014. Durability of expansive soil using advanced nanocomposite stabilization. International Journal of GEOMATE, 7(1): 927-937.

Bate, B. & Burns, S. 2012. Influencing factors on the dynamic properties of organobentonites. Geo-Congress: 3199-3208. doi: 10.1061/9780784412121.199

Bate, B., Zhao, Q. & Burns, S. 2014. Impact of organic coatings on frictional strength of organically modified clay. Journal of Geotechnical and Geoenvironmental Engineering, 140(1): 228-236. doi: 10.1061/(ASCE)GT.1943-5606.0000980

Bohnhoff, G. L. & Shackelford, C. D. 2014. Hydraulic conductivity of polymerized bentonite-amended backfills. Journal of Geotechnical and Geoenvironmental Engineering. 140(3):1-12. doi: 10.1061/(ASCE)GT.1943-5606.0001034

Bolat, F. C. 2011. Dynamic analsyis of honeycomb composite sandwich structure, (Master Thesis, submitted to the Ataturk University, Erzurum, Turkey)

Carrado, K. A. 2000. Synthetic organo- and polymer–clays: preparation, characterization, and materials applications. Applied Clay Science, 17(1-2): 1-23. doi: dx.doi.org/10.1016/S0169-1317(00)00005-3

Cernica, J. N. 1995. Geotechnical Engineering: Soil mechanics. John Wiley & Sons, Canada & USA.

De Carvalho, A. J. F., Curvelo, A. A. S. & Agnelli, J. A. M. 2001. A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 45(2): 189-94. doi: 10.1016/S0144-8617(00)00315-5

Denham, W. T. 1999. The hydraulic conductivity and adsorptivity of clay barriers materials containing organoclay, (Master Thesis, submitted to the University of British Columbia, Vancouver, Canada)

Ece, O. I., Alemdar, A., Gungor, N. & Hayashi, S. 2002. Influences of nonionic poly(ethylene glycol) polymer PEG on electrokinetic and rheological properties of bentonite suspensions. Journal of Applied Polymer Science, 86(2): 341-346. doi: 10.1002/app.10965

Esfahani, J. M., Sabet, A. R. & Esfandeh, M. 2012. Assessment of nanocomposites based on unsaturated polyester resin/nanoclay under impact loading. Polymers for Advanced Technologies, 23(4): 817-824. doi: 10.1002/pat.1977

Holtz, R. D. & Kovacs, W. D. 1981. An Introduction to Geotechnical Engineering. Prentice Hall, New Jersey, USA.

Gunister, E., Pestreli, D., Unlu, C. H., Atici, O. & Gungor, N. 2007. Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohydrate Polymers. 67(3): 358-365. doi: 10.1016/j.carbpol.2006.06.004

Kalkan, E., Akbulut, S., Tortum, A. & Celik, S. 2009. Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environmental Geology, 58(7): 1429-1440. doi: 10.1007/s00254-008-1645-x

Kumar, S. S., Krishna, A. M., & Dey, A. 2014. Parameters influencing dynamic soil properties: a review treatise. International Journal of Innovative Research in Science, Engineering and Technology, 3(4): 47-60.

Kurt, Z. N. & Akbulut, S. 2010. Effect of surfactant on the electrokinetic properties of natural clay. SEA-CSSJ-CMS Trilateral Meeting on Clays, p.337.

Kurt, Z. N. & Akbulut, S. 2014. The dynamic shear modulus and damping ratio of clay nanocomposites. Clays and Clay

Minerals, 62(4): 313-323. doi: 10.1346/CCMN.2014.0620405

Kurt, Z. N. & Akbulut, S. 2016. Some Geotechnical Properties of Clay Nanocomposites. Periodica Polytechnica Civil Engineering: 1-8. doi: 10.3311/PPci.9350

Kurt, Z. N. 2009. Investigation of the strength properties of surfactant modified clay, (Master Thesis, submitted to the Ataturk University, Erzurum, Turkey)

Kurt, A. and Koca, M. 2016. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites. Journal of Engg. Research, 4(4): 46-65. Available at: http://kuwaitjournals.org/jer/index.php/JER/article/view/1357

Latifi, N., Rashid, A. S. A., Siddiqua, S. & Horpibulsuk, S. 2015. Microstructural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution - A green soil stabilizer. Applied Clay Science, 118: 195-206. doi: 10.1016/j.clay.2015.10.001

LeBaron, P. C., Wang, Z. & Pinnavaia, T. J. 1999. Polymer–layered silicate nanocomposites: an overview. Applied Clay Science, 15(1): 11-29. doi: 10.1016/S0169-1317(99)00017-4

Lewicka, Z. A. & Colvin, V. L. 2013. Handbook of Nanomaterials. Springer, New York: 1117-1143. doi:10.1007/978-3-642-20595-8

Lin, J. T., Jong, S. J., & Cheng, S. 1993. A new method for preparing microporous titanium pillared clays. Microporous Materials, 1(4): 287-290. doi:10.1016/0927-6513(93)80072-3

Luna, R., & Jadi, H. 2000. Determination of Dynamic Soil Properties Using Geophysical Methods. Proceedings of the First International Conference on the Application of Geophysical and NDT Methodologies to Transportation Facilities and Infrastructure, St. Louis.

Majedi, P., Kurt, Z. N. & Akbulut, S. 2013. The investigation of some geotechnical properties and damping ratios of hydrophobic clay with latex additive. 5th National Geotechnical Symposium, Adana, Turkey.

Majedi, P. 2013. Examination of some geotechnical and dynamic properties of hydrophobic clay that mixed by polymer, (Master Thesis, submitted to the Ataturk University, Erzurum, Turkey)

Moraru, V. N. 2001. Structure formation of alkylammonium montmorillonites in organic media. Applied Clay Science, 19: 11-26. doi: 10.1016/S0169-1317(01)00053-9

Monvisade, P., & Siriphannon, P. 2009. Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption. Applied Clay Science, 42(3-4): 427-431. doi: 10.1016/j.clay.2008.04.013

Nazir, M. S., Kassim, M. H. M., Mohapatra,L., Gilani, M. A., Raza, M. R.& Majeed, Kh. 2016. Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites. In Jawaid, M, Qaiss, A. K, Bouhfid, R (Eds), Nanoclay Reinforced Polymer Composites: Nanocomposites and Bionanocomposites (pp. 33-55). Springer. doi: 10.1007/978-981-10-1953-1_2

Nguyen, Q. T. & Baird, D. G. 2006. Preparation Of Polymer–Clay Nanocomposites And Their Properties. Advances in Polymer Technology, 25(4): 270–285. doi: 10.1002/adv.20079

Pavlidou, S. & Papaspyrides, C. D. 2008. A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33: 1119-1198. doi: 10.1016/j.progpolymsci.2008.07.008

Powell, C. E. & Beall, G. W. 2006. Physical properties of polymer/clay nanocomposites. Current Opinion in Solid State and Materials Science, 10(2): 73–80. doi:10.1016/j.cossms.2006.09.001

Ray, S. S. & Okamoto, M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11): 1539-1641. doi: 10.1016/j.progpolymsci.2003.08.002

Rix, G. J. & Meng, J. 2005. A Non-Resonance Method for Measuring Dynamic Soil Properties. Geotechnical Testing Journal, 28(1): 1-5. doi:10.1520/GTJ12125

Rogers, K., Takacs, E. & Thompson, M. R. 2005. Contact angle measurement of select compatibilizers for polymer-silicate layer nanocomposites. Polymer Testing, 24(4): 423-427. doi: 10.1016/j.polymertesting.2005.01.010

Salopek, B., Krasic, D. & Filipovic, S. 1992. Measurement and application of zeta-potential. Rudarsko-geoloSko-naftni zbornik: 147-151.

Schadler, L. S. 2003. Polymer-based and polymer-filled Nanocomposites. Wiley Online Library: 77-153. doi:10.1002/3527602127.ch2

Schmidt, D., Shah, D., & Giannelis, E. P. 2002. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 6(3): 205–212. doi: 10.1016/S1359-0286(02)00049-9

Schmidt, G., & Malwitz, M. M. 2003. Properties of polymer–nanoparticle composites. Current Opinion in Colloid and Interface Science, 8: 103–108. doi: 10.1016/S1359-0294(03)00008-6

Silvestre, J., Silvestre, N. & de Brito, J. 2016. Review on concrete nanotechnology. European Journal of Environmental and Civil Engineering, 20(4): 455-485. doi:10.1080/19648189.2015.1042070

Şakar, G. & Bolat, F.Ç. 2015. The Free Vibration Analysis of Honeycomb Sandwich Beam Using 3D and Continuum Model. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9(6): 1077-1081. doi: scholar.waset.org/1999.8/10001828

Tang, X., Alavi, S. & Herald, T. J. 2008. Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydrate Polymers, 74: 552-558. doi: 10.1016/j.carbpol.2008.04.022

Turkoz, M., Savas, H., Acaz, A. & Tosun, H. 2014. The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics. Applied Clay Science. 101: 1-9. doi: 10.1016/j.clay.2014.08.007

Tjong, S. C. 2006. Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering, 53(3-4): 73-197. doi: 10.1016/j.mser.2006.06.001

Vichan, S. & Rachan, R. 2013. Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash. Soils and Foundations, 53(2): 272-281. doi: 10.1016/j.sandf.2013.02.007

Wang, Y., Li, X. & Zheng, B. 2016. Experimental study on mechanical properties of clay soil under compression by ultrasonic test. European Journal of Environmental and Civil Engineering, doi: 10.1080/19648189.2016.1217791

Zhao, H., Ge, L., Petry, T. M. & Sun, Y. Z. 2014. Effects of chemical stabilizers on an expansive clay. KSCE Journal of Civil Engineering. 18(4): 1009-1017. doi: 10.1007/s12205-013-1014-5.


Refbacks

  • There are currently no refbacks.