Effects of chemical impregnation agents on the characterisation of porosity and surface area of activated carbon prepared from sago palm bark

Iqbal Khalaf Erabee, Amimul Ahsan, Monzur Imteaz, R Sathyamurthy, T. Arunkumar, Syazwani Idrus, Nik Norsyahariati NikDaud


Unprocessed sago palm bark (SPB) is a material that has been newly utilised for preparations of activated carbons (AC), using physicochemical activation techniques comprising dual carbonisation and activation phases. Activations have been conducted utilising three agents: sulphuric acid (H2SO4), potassium hydroxide (KOH), and zinc chloride (ZnCl2). Characterisations of the porosities of AC preparations were performed using N2 adsorption-desorption to ascertain
BET and micropore surface areas as well as micropore volumes and pore-size distributions. Existing groups on the AC surfaces were resolved using Fourier Transform Infrared Spectroscopy (FTIR) analyses. The morphologies of the activated carbons were assessed via scanning-electron microscopic methods (SEM) combined with energy-dispersive X-ray spectroscopic techniques (EDX). The maximal surface areas (1639.34 m2/g), pore volume (0.649 cm3/g), micropore volume (0.335 cm3/g), and micropore surface area (1,148.58 m2/g) of the prepared AC using sago palm bark were discovered at activation temperatures of 700oC and with chemical impregnation ratios of 1.51/ zinc chloride to precursors. In the instance of KOH and H2SO4 utilisation, the surface areas of the AC preparations corresponded to 970.38 m2/g and 630.73 m2/g with pore volume of 0.458 and 0.196 cm3/g, respectively.


Activated carbon, Date pits, Sago palm bark, Porosity characterization

Full Text:



Aber, S., Khataee, A., Sheydaei, M. 2009. Optimization of activated fiber repaation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresource technology, 100(24), 6586-6591. http://dx.doi.org/10.1016/j.biortech2009.07.074

Acharya, J., Sahu, J., Mohanty, C., & Meikap, B. 2009. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal, 149(1), 249-262. http://dx.doi.org/10.1016/j.cej.2008.10.029

Ahmad, T., Danish, M., Rafatullah, M., Ghazali, A., Sulaiman, O., Hashim, R., Ibrahim, M.N.M. 2012. The use of date palm as a potential adsorbent for wastewater treatment a review: Environmental Science and Pollution Research, 19 (5), 1464-1484. Doi:10.1007/s11356-011-0709-8

Aziz, H.A., Ling, T.J., Haque, A.A.M., Umar, M., Adlan, M.N. 2011. Leachate treatment by swim-bed bio fringe technology. Desalination, 276 (1), 278-286. http://dx.doi.org/10.1016/j.desal.2011.03.063

Bansal, R.C., Goyal, M. 2005. Activated carbon adsorption. Taylor & Francis Group.

Bishnoi, N. R., Bajaj, M., Sharma, N., & Gupta, A. (2004). Adsorption of Cr (VI) on activated rice husk carbon and activated alumina. Bioresource technology, 91(3), 305-307. http://dx.doi.org/10.1016/S0960-8524(03)00204-9

Brunauer, S., Emmett, P. H., & Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60(2), 309-319. DOI: 10.1021/ja01269a023

Corcho-Corral, B., Olivares-Marín, M., Fernandez-Gonzalez, C., Gomez-Serrano, V., & Macías-García, A. 2006. Preparation and textural characterisation of activated carbon from vine shoots (Vitis vinifera) by H 3 PO 4—chemical activation. Applied Surface Science, 252(17), 5961-5966. http://dx.doi.org/10.1016/j.apsusc.2005.11.007

Danish, M., Hashim, R., Ibrahim, M. M., Rafatullah, M., Ahmad, T., & Sulaiman, O. 2011. Characterization of acacia mangium wood based activated carbons prepared in the presence of basic activating agents. BioResources, 6(3), 3019-3033.

Danish, M., Hashim, R., Ibrahim, M.N.M., Rafatullah, M., Sulaiman, O. 2012. Surface characterization and comparative adsorption properties of Cr(VI) on pyrolysed adsorptents of Acacia mangium wood and phoenix dactylifera L. stone carbon. J. Anal. Appl. Pyrol., 97 (0), 19-28. http://dx.doi.org/10.1016/j.jaap.2012.06.001

Demiral, H., Demiral, I., Tumsek, F., & Karabacakoglu, B. 2008. Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation. Surface and Interface Analysis, 40(3), 616-619. • DOI: 10.1002/sia.2631

Deng, H., Yang, L., Tao, G., & Dai, J. 2009. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution. Journal of hazardous materials, 166(2), 1514-1521. http://dx.doi.org/10.1016/j.jhazmat.2008.12.080

Dıaz-Dıez, M., Gómez-Serrano, V., González, C. F., Cuerda-Correa, E., & Macıas-Garcıa, A. 2004. Porous texture of activated carbons prepared by phosphoric acid activation of woods. Applied Surface Science, 238(1), 309-313. http://dx.doi.org/10.1016/j.apsusc.2004.05.228

El Nemr, A., Khaled, A., Abdelwahab, O., & El-Sikaily, A. 2008. Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. Journal of hazardous materials, 152(1), 263-275. http://dx.doi.org/10.1016/j.jhazmat.2007.06.091

El Qada, E. N., Allen, S. J., & Walker, G. M. 2008. Influence of preparation conditions on the characteristics of activated carbons produced in laboratory and pilot scale systems. Chemical Engineering Journal, 142(1), 1-13. http://dx.doi.org/10.1016/j.cej.2007.11.008

Ethaib, S., Omar, R., Mazlina, M. K. S., Radiah, A. B. D., & Syafiie, S. 2016. Microwave-assisted Dilute Acid Pretreatment and Enzymatic Hydrolysis of Sago Palm Bark. BioResources, 11(3), 5687-5702. DOI:10.1016/j.apenergy.2011.12.014

Gottipati, R. 2012. Preparation and characterization of microporous activated carbon from biomass and its application in the removal of chromium (VI) from aqueous phase. National Institute of Technology Rourkela.

Guo, J., Lua, a.C. 2000. Textural characerization of activated carbon prepared from oil-palm stones with various imregnating agents, Journal of Porous Materials, 7 (4), 491-497. DOI: 10.1023/A:1009626827737

Guo, Y., Yang, S., Yu, K., Zhao, J., Wang, Z., & Xu, H. 2002. The preparation and mechanism studies of rice husk based porous carbon. Materials chemistry and physics, 74(3), 320-323. http://dx.doi.org/10.1016/S0254-0584(01)00473-4

Hamad, B. K., Noor, A. M., Afida, A., & Asri, M. M. 2010. High removal of 4-chloroguaiacol by high surface area of oil palm shell-activated carbon activated with NaOH from aqueous solution. Desalination, 257(1), 1-7. http://dx.doi.org/10.1016/j.desal.2010.03.007

Hameed, B., Ahmad, A., & Aziz, N. 2007. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chemical Engineering Journal, 133(1), 195-203. http://dx.doi.org/10.1016/j.cej.2007.01.032

Haimour, N., & Emeish, S. 2006. Utilization of date stones for production of activated carbon using phosphoric acid. Waste management, 26(6), 651-660. http://dx.doi.org/10.1016/j.wasman.2005.08.004

Hu, C.-C., Wang, C.-C., Wu, F.-C., & Tseng, R.-L. 2007. Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO 2 for electric double-layer capacitors. Electrochimica acta, 52(7), 2498-2505. http://dx.doi.org/10.1016/j.electacta.2006.08.061

Inyang, M., Gao, B., Ding, W., Pullammanappallil, P., Zimmerman, A. R., & Cao, X. 2011. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 46(12), 1950-1956. http://dx.doi.org/10.1080/01496395.2011.584604

Kalderis, D., Bethanis, S., Paraskeva, P., & Diamadopoulos, E.(2008. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource technology, 99(15), 6809-6816. http://dx.doi.org/10.1016/j.biortech.2008.01.041

Kirubakaran, C. J., Krishnaiah, K., & Seshadri, S. 1991. Experimental study of the production of activated carbon from coconut shells in a fluidized bed reactor. Industrial & engineering chemistry research, 30(11), 2411-2416. DOI: 10.1021/ie00059a008

Li, W., Peng, J., Zhang, L., Yang, K., Xia, H., Zhang, S., & Guo, S.-h. 2009. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60kW. Waste management, 29(2), 756-760. http://dx.doi.org/10.1016/j.wasman.2008.03.004

Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., & Xia, H. 2008. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products, 28(2), 190-198. http://dx.doi.org/10.1016/j.indcrop.2008.02.012

Li, Y., Du, Q., Wang, X., Zhang, P., Wang, D., Wang, Z., & Xia, Y. 2010. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation. Journal of hazardous materials, 183(1), 583-589. http://dx.doi.org/10.1016/j.jhazmat.2010.07.063

Lua, A. C., & Yang, T. 2005.. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of colloid and interface science, 290(2), 505-513. http://dx.doi.org/10.1016/j.jcis.2005.04.063

Matos J., Nahas C., Rojas L., Rosales M. 2011. Preparation oand characterization of activated carbon from sawdust of Algarroba wood. 1. Physical activation and pyrolsis. J. of Hazardous Materials, 196(0), 360-369.

McEnaney, B. 1987. Estimation of the dimensions of micropores in active carbons using the Dubinin-Radushkevich equation. Carbon, 25(1), 69-75. http://dx.doi.org/10.1016/0008-6223(87)90041-8

Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A., & Fabregat, A. 2012. Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. Journal of Environmental Management, 102, 148-164. http://dx.doi.org/10.1016/j.jenvman.2012.02.021

Momčilović, M., Purenović, M., Bojić, A., Zarubica, A., & Ranđelović, M. 2011. Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 276(1), 53-59. http://dx.doi.org/10.1016/j.desal.2011.03.013

Mozammel, H. M., Masahiro, O., & Bhattacharya, S. 2002. Activated charcoal from coconut shell using ZnCl 2 activation. Biomass and Bioenergy, 22(5), 397-400. http://dx.doi.org/10.1016/S0961-9534(02)00015-6

Niu, R., Li, H., Ma, Y., He, L., & Li, J. 2015. Electrochimica Acta An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochimica Acta, 176, 755–762. http://doi.org/10.1016/j.electacta.2015.07.012

Phan, N. H., Rio, S., Faur, C., Le Coq, L., Le Cloirec, P., & Nguyen, T. H. 2006. Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon, 44(12), 2569-2577. http://dx.doi.org/10.1016/j.carbon.2006.05.048

Rhim, Y., Zhang, D., Rooney, M., Nagle, D.C., Fairbrother, D. H., Herman, C., and Drewry, D.G. 2010. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature. Carbon, 48 (1), 31-40.DOI:10.1016/j.carbon.2009.07.048

Rodriguez-Reinoso, F., Molina-Sabio, M. 1992. Activated carbon from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 30 (7), 1111-1118.

Salman, J., & Hameed, B. 2010. Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of hazardous materials, 175(1), 133-137. http://dx.doi.org/10.1016/j.jhazmat.2009.09.139

Singhal, R. S., Kennedy, J. F., Gopalakrishnan, S. M., Kaczmarek, A., Knill, C. J., & Akmar, P. F. 2008. Industrial production, processing, and utilization of sago palm-derived products. Carbohydrate polymers, 72(1), 1-20. http://dx.doi.org/10.1016/j.carbpol.2007.07.043

Srinivasakannan, C., Abu Bakar, M.Z. 2004. Production of activated carbon from rubber wood sawdust. Biomass and Bioenergy, 27, 89-96.

Sricharoenchaikul, V., Chiravoot, P., Duangdao, A., Duangduen, A.T. 2008. Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy Fuels, 22, 31-37.

Van Soest, P.J., Robertson, J.B., and Lewis, B.A. 1991. Methods foe dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74 (10), 3583-3597. DOI: 10.3168/jds.S0022-0302.

Yusup, S., Aminudin, A., Azizan, M.T., Abdullah, S.S., Sabil., K.M. (2010). Improvement of rice husk and coconut shell properties for enhancement of gasification process. Proceedings of Third International Symposium on Energy from Biomass and Waste, Venice, Italy.

Youssef, A., Radwan, N., Abdel-Gawad, I., & Singer, G. 2005. Textural properties of activated carbons from apricot stones. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2), 143-151. http://dx.doi.org/10.1016/j.colsurfa.2004.09.008


  • There are currently no refbacks.